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Abstract: In this paper,a new robust extended Kalman filtering algorithm based on singu-
lar value decomposition (SVD) of covariance information matrix is presented with application to
the flight state and parameter estimation of aircraft. The presented algorithm not only has a
good numerical stability but also can handle correlated measurement noise without any addition-

al transformation. The algorithm is formulated in the form of vector-matrix operations.so it is

. also useful for parallel computers. The applications to the flight state and parameter estimation

by simulated and actual flight test data computation of two types of Chinese aircraft show that
the new algorithm presented in this paper can give more accurate estimates of flight state and
parameter than extended Kalman filter (EKF) for different initial values and noise statistics.
Moreover,the new algorithm has less requirements for the maneuvering shapes, noise levels ,da-
ta length and better convergency than those of EKF. The computational requirements of the
new filtering algorithm have been reduced greatly by expioiting some special features of matrix
computation and system model. It is proved that the new filtering algorithm can give good re-
sults even for low sample rate flight test data.
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Introduction

Accurate estimation of aircraft motions from noisy or incomplete flight test measure-

ments by optimal estimation theory is an important problem in the analysis of flight test

experiments. The measurements may often contain significant errors which must be esti-

mated before the flight test data are used in any performance calculations. These problems

can be implemented as state and parameter estimation problem of nonlinear system. Solu-
tion to the problem can be obtained by EKF™'? and maximum likelihood (ML)%! method.
However, EKF may suffer from numerical ill-conditioning. To overcome this difficulty of

Kalman filter,Potter® introduced the idea of using a square root of the covariance matrix

in the algorithmic imnplementation. Bierman® have introduced strictly algorithm approach-

es to the square root filtering. Bierman also introduced the idea of using a UDU™ decomposi-

‘tion of the covariance matrix in place of the square root decomposition.
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Both the square root and UDUT decompositions may result in numerically stable filter
algorithms. But these formulations can only be used if one has single dimension measure-
ments with uncorrelated measurements noise. Generally one does not have this in practice.
To handle correlated measurements noise, additional transformations have to be used
which increase the computation cost. Moreover, these formulations can not be effectively
implement on vector processors because their designs are virtually serial in structure.

In recent papers by Oshman®*®, the author gives a V-Lambada filter based on the
spectral decomposition of covariance or information matrix in a VAV form. But,this filter-
ing algorithm is complex,and the computational requirements is large. Wang et al. 1 also
gives a Kalman filter algorithm based on SVD,but the authors just give the linear system
filter formulations.

In this paper,we will present a SVD-based extended Kalman filtering algorithm which
not only has the UDU" formulation as in the Bierman’s method,but also is suitable for par-
allel computer,it has a higher numerical stability and computational efficiency than EKF
and other previous algorithms. The applications in the flight state and parameter estima-
tion by the simulated and actual flight state and parameter estimation by the simulated and
actual flight test data computation of two types of Chinese aircraft show that the new algo-
rithm can not only improve the numerical robustness and accuracy of flight state and pa-
rameter estimation but also make the computation efficient by exploiting some special fea-
tures of matrix computation and system model of flight state estimation.

2 Singular Value Decomposition and Its Computing

The singular value decomposition of an m-by-n matrix A(m > n),is a factorization of
A into product of three matrices. That is,there exist orthogonal matrices U € R”"*"and V
€ R"*" such that

A=UAVT, A=l:S 01‘ 1
0 0
where A € R™*" and S = diag(a;,+*,0,) with
g, > e >0, > 0.

The numbers a,,++,0, together with ¢,,, = 0,+**,0, = 0 are called the singular values
of A and they are the positive square roots of the eigenvalues of ATA. The columus of U
are called the left singular vectors of A (the orthonormal eigenvetors of AA") while the
columns of V are called the right singular vectors of A (the orthonormal eigenvectors of
ATA).

In practice,if ATA is positive definite,then (1) can be reduced to
A =U[S}VT. (2)
)

where S is an n-by-n diagonal martix. Especially,if A itself is symmetric positive definite

then we will have a symmetric singular value decomposition
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A=USUT =UDU", 3
In our filter algorithm derivation, (2) and (3) will be of particularly real interest.
3 Extended Kalman Filter Formulation
Consider a nonlinear system described by the discrete-time state space equations ;
Xegr = f(x) + g(x ), (4)
Zy = h(x,) + & (5)
where x, € R"is the state vector,z, € R” is the measurement vector, f(+),g(+)and k()
are 7, [ and m dimension nonlinear vector functions,respectively,7, € R'is the disturbance
input vector,{, € R" is the measurement noise vector. The sequences {7} and {{,} are
assumed to be zero mean Gaussian white noise sequences with symmetric positive definite
covariance matrices @, and R,,respectively. Initial state x,is Gaussian random variable with
N(%,,P,),and the sequences {7,},{{,} and x, are assumed to be mutually independent.
The extended Kalman filt,er formulation in covariance/information mode is then
described by the following recursive equations under assumptions that the nonlinear func-
tions f(x,) 18 (X:) and h(x,) can be expanded in Taylor series about the conditional means
%5 and £, with neglecting higher qrder terms.

Time update (covariance mode) ;

Xipe = f(E), (6)
Pivip = Do 1P Piirn + GG, (7
Measurement update (information mode)
B = Xy + Kulze — By s (8)
Pyi = Py + H{R, 'H,, (N
K, = Py HIR; ", ' (10)
where
By = 2L it G g0,
dh(x,)
Hy = a(x: —_—

where P is the covariance matrix of estimation error, and K, is the Kalman gain matrix.
The initial condition given by £,_, = ¥,,P,_, = P,.
4 New SVD-Based Extended Kalman Filter Formulation
4.1 Time Update Formulation

. In the covariance equation (7) of the extended Kalman filter,assume that the singular
value decompositon of P, is available for all ¢, and has been propagated and updated by
the filter algorithm. Thus,we have

Py = U DiulUs. a1

Eg. (7) can therefore be written as

-
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Piiie = Corr Ui DipUiPisr 4 -+ GiQUGE. 12>

Our goal is to find the factors Uiy, and Dy, from Eq. (12) such that P,

= U, uDi1WUis 1 where U factors are orthogonal and D factors are diagonal. Provided

that there is no danger of numerical accuracy deterioration,one could.in a brute force

fashion,compute P, and then apply the singular value decomposition of symmetric

positive definite matrix which given by Eq. (3). However ,it has been shown that this is not
a good numerical exercise-", Instead we define the following (/ + »)-by-n matrix

.‘Di-p.\{-'akqj;rﬂ,k

(13)
«/ QIGE
and compute its singular value decompositiorn
DklkUZM@ZH.k D’k
=U;|: }V;T. (14)
QIG} .
Multiplying each side on the left by its transpose,we have
T T T HT - [— T T 7 T Trr D"’ T
¢Ie+1.ALIeIIleelle-DlelkUklk¢le+1.k + Gk Qk le (= V Ic[Dlz OjUk Lk 0 Vk .
That is
Dyy, kUklthllc(J Ic|le¢k+1.l.- + G.Q, IeT = V’IzD’IeZV;cT- (15

Comparing the result with (12) ,we find that V} and D, are just the U, ,,and D,,, , we are
looking for. Here we want to point out that the (I 4- n)-by-(I + n) orthogonal matrix U,
and its transpose U." are not needed directly in our algorithm and it is not necessary to
store or compute them explicitly.
4.2 Measurement Update Formulation
In the information mode covariance equation (9) of extended Kalman filter,applying
the singular value decomposition of symmetric positive define matrix to P, and P, ,_, re-
spectively,we may get
(Uw;DEMUEu)_l — (Ulz|k—1DI§|k—1U;erll¢~1)‘l + HIR;'H,,
=Wi-) ' Do Usiioy + Wh- ) WU HiIRFVHU - Uih- 1
=(Ul- ) "D + U HIRD H U - DU G-, (16
In Eq. (16) let
LLi = R, a7
be the Cholesky decomposition of the inverse of the covariance matrix.
Now considering the (m 4+ n)-by-n matrix

[LEHkUklk-ljl

i (18)
Dyi-q
and computing its singular value decomposition,we have
s H U D,
[HHn]_ P
Dii—a 0
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Multiplying each side on the left by its transpose yields
Diiy + Ul \HILLTHU o = ViDEVL (20)
then Eq. (16) can be written as ’
(Uh) T D) T E U ™= Wk ) VRDEVI Ui

= [Wu VO I DW= V] (21)

Comparing two sides of Eqg. (21) we get
Ui = Uuk-qvla (22)
Dy = (D)~ (23)

In this manner,a new measurement update formulation has been obtained.

For the Kalman gain,an alternative expression may also be get by equations (10),
(11) and (17)

K, = U DiUiHIL L}, 24)
There is no need to obtain a formula for the singular value decomposition of K,.
The state vector measurement update is given by
Xppe = Xap—r T Kilze — h(Z-) ] (25)
Together with the time update (6),(14) and (15) described in the above section and the
measurement update of the covariance matrix and the state vector (19) ~ (25) described
here,a SVD-based new extended Kalman filter algorithm is formulated.

Note 1 In oreder to reduce the computational requirement,only the right SVD factor
V of matrices (13) and (18) are need computed in our filter formulation.

Note 2 Computations of K, from (24) and %, form (25) are straightforward ,the
essential calculation for K, and %, is just the matrix-matrix and matrix-vector
multiplications. Notice that L is triangular and H{L, = (LiH,)"can be obtained from the
previous computation,the computational requirement can be reduced by exploiting this fea-
ture.

5 Applications to Flight State and Parameter Estimation
5.1 Nonlinear Model for Flight State Estimation

The six degrees-of-freedom nonlinear model for flight state estimation is presented as

follows :

4 =—qw + rv — gsinf + a,,

Y =— ru -+ pw + gcosfsing + a,,

w =— pv + qu + gcosfeosp + a.,

J ¢ = (gsing + rcos@p) /cosd, (26)
é= qcos@ — rsing,

¢ = p + gsingtgl + rcoseptgd,

 h = usind — vcosfsing — wcosfcosp

where, a,.a,.a. are linear acceleration components of the aircraft;u.v,w are components
- A
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of the linear velocity in body axes;¢,8,9(yaw,patch and roll) are Eular angles; p.q,r are
components of angular velocity,k is the altitude and g denotes the gravitational constant.
In general, the measurements of input variables, # = [a, ,\a_\.saz’[)qu‘]T, and
observation variables z = [V ,8,a,8,9,h]" are corrupted by scale factor errors,biases and
random noises , where
a, =a, + b.+ 7.,
a,=a, +b,+ 17,
a.=a. + b+,

27
p=put b, +7,,
q=qu+ b+ 7,
¥ =", + b + 7.
The observation equation of aircraft can be described as follows ;
(V,=A+A) V& F o Fw?+ by + &y,
| By = (1 + Atan—'[(u + ray — pzs)/u] + by + Lo
a, = (1 + A)tan '[(w — gz, + py.)/ul + b. + L., (28)

0,,. =0+ by + Ca,
Ou =90+ b, + &
h, = (1 + Ak + by + Ch-
The system described by Egs. (26) ~(28) forms a set of nonlinear dynamic equations’

of the form;
(@) = fx@),u,).b,n)), (29)
ZM(I:) = h(x(t)ﬂ‘m(t)vb) + sl(t)v (30)

X

where
x = [u,v,w,d,0,0,h]",
N =[1:570 0075575717
§ = [é’vQCp»Ca,Co-é‘wé’;.]T,
b= [b,,by,b.18,,5,15,,0,,55,6.:85,0,455 44,4 A0 Aus A4 17,
Thus ,our problem ¢an be stated as follows ;given the nonlinear model (29),(30) and
a set of noisy input and output measurements,estimate the system state x and parameter

b.

In order to estimate the state and unknown parameters,in general,one can form an ar- -

. H (31)
X = 0
b

Usually, the nonlinear equations (29),(30) are first linearized and then transformed

gumented state model,that is, set

into the discrete-time version,thus the larger modelling errors may often appear when the

aircraft is maneuvering. In order to decrease the modelling errors,a direct and exact
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argumented state discrete-time model for {light state and parameter estimation is given
S S A s

follows .
xi = fxp) + GaDn. (32)
The discrete form of output equation is given by:
7y = h(xi) + & (33)

where , the process noise {7} and measurement noise {{,} sequences are assumed to be
independent ,zero mean and Gaussian with covariance @ and R, respectively.
5.2 Results of Simulation and Application Computations

The new algorithm presented in this paper has been applied to the flight state and pa-
rameter estimation with simulated and actual flight test data. The results of simulation and
application to two types of Chinese aircraft show that the new algorithm can give accurate
estimate and is much more stable and accurate than EKF. The results of estimated true
state value,and the fits of computed responses with measurement responses are shwon in
Fig. 1 and Fig. 2 with the sample of 1/10 and 1/32 second,respectively. It is obvious that
the fits of computed responses with measurement responses are accurate and satisfactory
both for lower and highér sampling rates.
© Conclusions

Tu this papersa new extended Kalman filter algorithm, which is based on the rwell-
known singular value decomposition, is proposed. The new filter formulation have the
highest accuracy and stability characteristics in all existing filter algorithms,and the new
filter formulation can handle correlated measurement noise without any additional trans-
formations. Third,the present algorithm is also suitable for parallel computer because it is
formulated in the form of matrix-matrix and matrix-vector operations. The applications of
presented new algorithm to the flight state and parameter estimation of aircraft show that

the new algorithm is much more numerically stable and accurate than EKF.
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