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Abstract: This paper proposes a novel estimation algorithm and adaptive control system for
composition control at a raw mill in cement manufactory, Using a little “a priori” knowledge
about the controlled process,fhe novel algorithm avoids wrong estimates arising from the fact
that the system inputs are not persistently exciting. In the new adaptive control scheme. the
additional composition estimator based on our proposed algorithm and the modified minimum
variance self-tuning controller are employed.

Both simulation experiments and practical operation show the new adaptive control scheme
and estimation algorithm is successful. Compared with the classical least-squares algorithm,the
new algorithm has a good convergence and high accuracy. The new adaptive control scheme has
been implemented in an industry computer,and have used for real-time operation in a cement
manufactory. The practical operation results have been very encouraging.

Key words : persistently exciting; criterion function; parameter estimation; adaptive con-

trol; computer control

1 Introduction

The objective of composition control at a raw mill in cement manufactory is to main-
tain chemical composition of raw meal at desired value. The control problem arises from
the fact that the chemical composition of various raw materials vary from time to time,and
they are not measured directly. The composition blending system is a multivariable and a
coupled one and includes large time lag and nonlinearity. Therefore it is difficult to improve
cement quality with classical PID controller.and one of the best solution for this problem
would be to use the adaptive control. Dr. Keviczky has made great contributions to this
areal™™%, In his scheme,the composition matrix is simplified and assumed to be constant
and known to simplify the control system. Therefore it can only be applied in the manufac-

tory where the homogenous and pure raw materials are used. Nevertheless .the composition
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of raw materials used in our Chinese cement manufactory are impure and unknown and it
changes considerably. In this case,if this system is still used,the controlled composition of
raw meal will be deviate from the desired value. Hence,the raw materials must be estimat-
ed and the composition matrix must be adjusted timely. However,under normal operation
condition the feed weights are almost invariant,i. . the system inputs are not persistently
exciting, and the conventional estimation algorithm is unsuitable without the additional
signals. Using an “a priori” knowledgg——the m%aen val.!_"ﬂd' composition of raw materi-
als, this paper introduces a new criterion function and derives a novel algorithm which
avoids wrong estimates arising from the mentioned fact.

According to circumstances that the composition of raw material is complex,timevar-
ing and unknown in Chinese cement manufactory,the linearizing and decoupling model of
this process is given and a adaptive composition control scheme is presented in this paper.
The main control loop with variable reference is implemented by a minimal variance self-
tuning regulator ,and raw material composition is estimated by the estimator based on new
algorithm. Both simulation experiments and practical operation have demonstrated the
goodness and efficiency of the new adaptive control system.

2 Chemical Composition Estimation
2.1 Problem Statement

There are four kinds of important oxide composition in the raw meal, including

C(Ca0),S(Si0,) ,A(ALO,) and F(Fe,0;). The relation between oxide composition and

feed weight of raw material can be described by following equation.

‘C(s) e C, s C, g, () 0 1 ETR AN

S(#) 8i  S. e S, g: () w, (1)

AQ) i~ A, A, - A, : ' L
T(). F, F, = F, O g () wy, (£).

Where, C;,S;,A, and F; denotes four kinds of oxide composition in the raw material 7,
respectively. g;(¢) is the raw mill dynamics to raw material /. w,;(¢) is the feed weight of
the raw material i.

The quality of the raw meal is usually characterized by the following three moduli:

: o 1000C
Lime standard (LM). LM = 78S T 1.1A + 0.8F" (2)
Aluminium modulus (AM); AM = i;l,—, (3)
Silica modulus (SM) . SM = i (4)
~ \ A+ F

The Eq. (1)~ (4) show that these moduli are interactive and oxides/moduli computations
are nonlinear,that means the input/output model in multivariable is coupled and nonlin-

ear. On the other hand, C;,S,, A4, and F,are usually unknown andvariable and considered as
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the estimated parameters, In order to obtain good control results,C;,S;, A, and ¥, would be
rejusted in time on the basis of estimate values for composition of raw materials.

The esttmation problem can be stated as follows:given a set of raw meal composition
measurement,and the feed weights of raw material are known,estimate the raw material
composttion.

For convenience,let us only consider the second row of Eq. (1) ,i.e.

S@) =S¢, (ODw, (1) + S,z (Dw, () + =+ + S,.g.()w, ().

In fact,the mill dynamics can be described by a first order model with a time delay
——Il‘.*l

——wi(2).

1 — b2

i<

yi(2) = gi(2)w;(2) =

Assuming d; = d ,the measurement equation at the 4th instant is given by

m »

Sk = > 8w k) = D [Sibiyitk — 1) + cw;(k —d — D] + e(h). (5)
1

i=1 i=

Where e(%) is measurement error.
For the control system,the total time delay will be in order of 30 min. ,and a sampling
interval of 30 min. will usually be chosen,hence d = 1 and Eq. (5) can be rewritten as fol-

lows.
Sy = D 8mik) = D [S:biyi e — 1) + cw(k — 2))] + e(h).
i=1 i=1

If we consider n sampling periods,the matrix equation can be obtained.

‘P‘u = ‘Qn@ + E’ (6)
by (0) 4 o (= 1) bays (0 4 cowy(— 1) D dm(0) + cpw, (— 1)
a bran (1)~ e, (0D baae (1) = eamen (0D by (1) + ¢, w, (0) —l

by (n — 1) ey (n — 2) byya(n — 1)+ coregln— 2) v by, (t — 1) + cw, (n —- Z)J
¥, = [S(1),8(2),Sm ],
O = [S,.8,,,S,17,
E = [e(1),e(2),+,e(n)]".
Equation (6) is a math model to estimate composition of SiO,.

Uncer normal conditions,the inputs to system would not be persistently exciting.,and
the correct estimate results could not be obtained by the classical least-squares algorithm.
2.2 Parameter Estimation Algorithm
2.2.1 Batch Processing Algorithm

Assume the composition of mixed raw materials are non-homogenous . but the average
composition is known,that is “a priori” knowledge on raw material composition ,and useful
for selecting sample and estimating parameter. The assumption is reasonable since the av-
erage composition can be obtained by the observation over a definite period of time.

Let us introduce a new criterion function and consider a set of » measurements.,
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J = (‘_P‘" m Q:néln)T(Wu . ‘Qn@n)
n—1

LY. r— LS, 16
+gn[1f - (;@’ @D iR — 6.8 + 81 <)

i=]

Where @, is a estimated parameter vector after the processing of / measurements,I” is a
vector of average composition of raw materials and g is a weighting factor, it gives more or
less significance to “a priori” knowledge.

For convenience,let us suppose that
n—1

_ep ol
B, = = ;@,. (8)
; 33 5 .add
According to the extremal theorem,the necessary condition to minimize J is M 0,
that is
i 1 T
2|, — =6
3J 3 (¥, —06,)7 [ A et 14
3_@:_ 2 ——a@'"—(q/,. e .Q,,@,,) -+ 2gn T r,— > 3
—— 207, — 0,0,) — 2gn i(r,, =g
n n
=— o[ v, — 010,6, + T, — £6,]
=—2[@¥, + ) — (@0, + £1,]6,]=o.
As a result,the estimator can be obtained,that is
-1
6.= @i, + £1,| " @v, + oL. (9)

Where I, is a unite matrix with dimension m X m,
In practice,the Eq. (9) is the classical least-squares estimator for g = 0, that is
8, = (') ', (10)
Comparing Eq. (9) and Eq. (10).it is easy to see that the new algorithm is far superior to

the classical one. The new algorithm can ensure the (QIO,, + %I,,, matrix invertible and

the parameter identifiable by choosing the value of g, and result in unique and desired esti-
mate values despite lack of persistently exciting inputs.

The above equations were derived in a form suitable for batch processing,in which the
amount of data storage and computation increases with », this is obviously undesirable for
a algorithm such as self-tuning.

In order to tarck varying parameter in time,we expect to obtain the recursive form of
estimator.

2.2.2 Recursive Algorithm !
The recursive form for Eq. (9) can be given by a reasonable approximation in practical

application. If n is large enough with respect to g,the following approximation is valid
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(\QI\Q,, + %I ~ (2702,), then (9) may be rewritten as

8, = ()Y, + gl,). an
Now the recursive form of new algorithm can be derived as follows.
. On the basis of n observations.a new observation is made. Let us estimate the
parameter ® according to n + 1 observations.

One set

w

T Q,
Y, = [ {arnls Lowy = | |
] 1
o, = (202)"". 12>
The dimension of @, depends on the number of estimated parameter,
Using (12)gives
0 |
®n+l =('QI+]‘Q"+1)_1 = {[‘QI wn+1:|[ ' T :|} .

Wty
=[50, + w017 =[O + @@, )7 (13)
According to the following indentity™’
(A+BCHY'=A"'"—A"'BA+CTAT'B)"'C'A" ", (14)
(13) becomes:
Oy = {0 + w0} =D, — Do, [ + 0, D0, ] 0D,

Note [I + o, ®,w,., ] is a scalar,then suppose

Puir = [ + w1 D@, ], (15)
The above equation may be rewitten as
¢n+] . ¢n . pn+1¢nwu+lw:f‘+l¢n S [I il pv|+l¢nwn+lw?"+11®u- (16)

Suppose 8,,, denotes estimated value of parameter based on n + 1 observations,

@!H-l: "_'_1[0:{_'_1?"_1 + an+1:|

T Wu
T n+1[‘Qn : wu—l] ----------- + g¢n+1pn+]

(n+1)

o ‘pn+1[03‘p‘n ats ‘Uu—1¢1u+1>] + gD,y
== ‘Dn+1[¢u_1@n ST [y a)n+1¢(n+1)] + gDl
; = 0,1,[9,%0, + @, idrn] + 8Pt (Do — L),
In term of (13) ;
O,01= P, [( P} — 0,101, )0, + 0, ¢ ]+ gD ([ory — )
= @,, + D11 (Piwry — “’;T—lgu) Fng Ll Fymaprralii)

= @n + B (P — wIﬂ@n) + gDy (17)
where Ei=9,.0,., (18)
A, =gl — T, (19

Using (16) gives
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ol T
dll+1= [:¢n o 10n+1¢uwn-+-1wu+1¢:|]w|:+1
T
= Q0,1 [ — Pu190511Du, 41 ]
T
= ®na)u-i-lpu+l[1/pu+l = wu+l®llwu+l:|

y I ?
= Dw, P = 1+ 0 @@, i
From (8)
i 1 S el S = = .
I = 1;@, =I—— 1[;@, +6,]= [+ T, - 6,]. 2D

To sum up,the recursive algorithm be expressed by the equations (17}, (19),(20)
and (21).
From the new algorithm,it is shown for a large enough value of n,I’, . tends to I', and
A,4; tends to zero. So Eq. (17)can be written as
C 85 =6, + B [dern — ¢I+1@,.:|- (22)
That shows the new recursive algorithm tends to the classical RLS algorithm,and it
implies the new one is convergent. The simulation results later reported show that the new
recursive algorithm has good convergence and is more accuruate than the classical RLS al-
gorithm. This new algorjthm is also suitable for the other oxide.
3 Adaptive Control System
3.1 Linearizing and Decoupling Model
As mentioned is Section 2. 1;thé composition blending system is a coupled and nonlin-
ear one. This makes it difficult to design the control system and also to adjust the regulator
on-line,thus the requirement for linearizing and decoupling the model is proposed.
In order to linearize and decouple the model,some reasonable approximations must be
made according to specific circumstances.
In fact,an ideal raw material blending process can be described by the following equa-
tion,in which raw mill dynamics is ignored temporarily.
Ce) Qi1 Cy 20270 [rery (2)]
S(t) S, S, S, 0| |wit)
awl™ a4, 00 o || 23
(1) g0 “Fyl-moyt) ]
In consideration of "ub"g(t)/w’l (t) = const. , let us choose new input/output vectors in-

stead of the original ones

U= [u u2]T1-—; (w; (&) /1w, (2)  w,(2) /o, ()], (24)
Y=1[y »]"=[0/LM 1/AM]T" (25)

Then the linearizing and decoupling model can be derived from Eq. (1)~ (4);
Y =AU+ B.. - . it A (26)

Where
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4o I:Z. 8S:/D 0.8F,/D

0 F,/D

B=’_Dli|.

LD,

D, = {2.85, + 1. 14, + 0. 8F, + [w, () /w,(t)](2.8S, +- 1. 14, + 0.8F,)}/D,

D, = {F, 4+ F,[w, (&) /w, ()]} /{A, + A,[w, () /w, ()]},
Dl = Sl + Szl:wz(t)/w1(t)]s

D = 100C,

+ 100C,.

(27)

(28)

(29
(30)
3D
(32

Here S, and F, are usually assumed known,the others are unknown and variable ard con-

sidered as the estimated parameters.

3.2 Self-Tuning Control System

On the basis of the new model, the multivariable self-tuning control system is

proposed. Its block scheme and simplified flow sheet are respectively shown in Figl. and

Fig. 2.
.
1aw material
estimeator
reference time van'ng modified self- optimi- raw homogeniza
Pregulator [*] tuning controller sation mill tion silo
[]
raw mill
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|
Fig.1 The block scheme of self-tuning control system
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[
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silo

Fig. 2 The simplified flow sheet of self-tuning control system

Here the inner control loop consists of a modified MIMO minimum variance self-tun-

ing (MIMO-MV-ST) regulator with required average for finite time and time-varying pro-
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portional regulator is in the outer control loop. The composition estimator based on the
new algorithm is employed to adjust the related computation matrix.
According to Eq. (26) ~ (28) and the mill dynamics, the control model can be de-

scribed as follows

YY) = Az DYk — 1) + B DHUGk — d) + E(k), (33)
ag -~ 0 by, boz
where A = A = [ ] B = B, = [ | ]
0 ap 0 by

d = 1,and e(%) is a disturbance sequence.
According to the minimum variance theory.the optimal control strategy is
Uy = By'[Y, — A7'Y ()] (34)
where Y, refers to the required reference value of the output, A, and B, denote the estima-
tion values and they can be obtained by using the classical recursive least-squares algo-
rithm.
In order to achieve a good control result, Y, would be replaced by the time varying
reference value Y,,. That results in the following modified MV-ST control law.
U = B[V — A7Y (D] (35)

whereY,, =Y, — Tf—k [Y.(k) —Y,]Jfork=1,2,,(n—1) ;and Y, = y, for £ = n, Here

n is the assumed filling time, Y, (k) is a prediction at kth instant for the actual average
value,

In fact,the measurements of the silo output cannot be used for feedback. Therefore,
the silo output must be estimated using the following first order model.

by
1+ alz‘ll

where I is the unit matrix and &, = v(k)/q(k) ya; = a; (k) =— [q(k) — v(k)]/q(k). Here

\ G.r(zil). = (36)

'3
k is the discrete time and (k) = Zv(i) 4- q(0) is the instantaneous silo content; v(k)

i=1

stands for the quantity of raw meal fed to silo during the £th interval.

4 Simulation Experiments and System Implementation

In order to verify the feasibility of new estimation algorithm and adaptive control
scheme,a complete blending process has been simulated on a computer and the simulation
experiments have been made as follows.
4.1 Experiment 1 Comparison of New and Classical Estimation Method

Here the choices of initial values for both algorithms in recursive form are the same,
that is @, = 0;P, = 10°I. Fig. 3 shows that the estimate values resulting from the classical
LS algorithm are far away from the actual values. The silica contents of lime s, is always
greater than the actual value and the silica contents of day s, is always smaller than the

actual value, Fig. 4 shows that the new algorithm is accurate and has good convergence
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compared with the classical one,Of course the weighting factor g has a significant
influence on convergence, and it could not be discussed in this paper due to the limitation

of space.

s estmatgd values Y

estimated values

actunl values

actual values

A actual values aclual values

Jestimated valyes estimated values

Fig. 3 Result of the classical RLS algorithm Fig. 4 Result of the new algorithm

4.2 Experiment 2 Comparison.of New Control Scheme and Old One for Step

' Disturbance ‘
~ Assume the silica content of lime and clay is subjected to a step increment disturbance
with 1% of mangnitude. In this case,if such ST control scheme without composition esti-
mator as Keviczky proposed is still used,then the LM at silo output,as shown in Fig. 5.is
far away from the desired values. However,using the new control scheme with composition

estimator,the silo output,as can be shown in Fig. 6,is close to the desired values.

. desired value

0 desired value 92 T
- paan et
...P
s, " b
s ran sy s s #0 < ;
= . silo output
silo output F
N : =
Fig. 5 Results of old control scheme Fig.6 Results of new control scheme
for step increment disturbance for step increment disturbance

4.3 Experiment 3 Comparison of New Control Scheme and Old One for Sinusoidal
Disturbance
Assume the silica content of lime and clay is subjected to a sinusoidal disturbance with
1% of mangnitude. The control result without composition estimator is shown in Fig. 7,

and the fluctuation of silo.output is very great. Fig. 8 shows the fluctuation of silo output

. desired value g desirpd value
92 ',-T-\,l... / 92 -’_m._.,_..r T
f.'\ .‘"'ﬂ.—"' -\f‘-.\.—
E ¢ silo output v = silo outpul
4 I
4 N $ A
I'\U.-‘/
Fig. 7 Result of old control scheme Fig. 8 Result of new conrtrol scheme

for sinusoidal disturbance for sinusoidal disturbance(g=0. 2)
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in effectively rejected.
4.4 System Implementation.and Operation Results. ‘

The adaptive composition control system have been implemented on a PMC-88 com-
puter. The total program with 30kB includes twenty-six subprograms and completes the
following works ; computation, control s measurement , diagnosis , indication, etc. This new
control system has been used for one years in a cement manufactory.

The practical operation results have been very encouraging,and the variance of the si-
lo output has been brought down by 39% ,from 2. 63 to 1. 61.

5 Conclusjons , ' _

In our proposed algorithm,using “a priori” information on the pa‘ram_erers,the wrong
estimates due to lack of persistently exciting inputs are avoided without applying additional
signals, The estimate values of new algorithm approximate to the actual values compared
with ones of the classical algorithm. This algorithm provided a new approach to solve the
problem on composition estimation for blending process. '

On the basis of the analysis on static characteristics of blending process,its model is
linearized and is partly decoupled by choosing new input/output vectors. For this model is
based on the case that the composition matrix is not simplified, it is accurate and has
strong suitability comparing with that one presented by Keviczky,

To introduce the composition estimafor and the modifed MV controller is the master
key to success for the new control scheme. The new system has overcome the faults of
Keviczky’s scheme which is unsuitable for this case the composition of raw materials is
complex, time-varing and unknown. As a result,the saticfactory output values can be ob-

tained ,despite the great variations of composition of raw material.
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