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Robust Root Clustering of Linear Systems with
Structured Uncertainties
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Abstract: Using generalized Lyapunov equation approach, this paper studies the problem of
root clustering in some subregions of the complex plane for the linear time — invariant systems
with structured uncertainties. If all the eigenvalues of the nominal matrix are within a specific re-
gion of complex plane,the proposed sufficient conditions will guarantee the root clustering of the
perturbed matrix in the same region under structured uncertainties. The criteria presented here are
less conservative than the results currently available in the literature.
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1 Introduction

In recent years,the problem of robust stability of linear systems with parametric un-
certainties has been an active area of research!'?, However , most of the literature on ro-
bust stabilities is concentrated on the conventional stability regions. Lately,some authors
begin to consider the robust D-stability or root clustering problem™*,in which the stabili-
ty region is some specified subregions of the complex plane. In[3],a generalized Lyapunov
equation (G.L.E) approach is proposed. This result is extended in [4]to uncertain sys-
tems. Quite recently,[5,6 Jpresent some criteria for a class of D-regions specified by alge-
braic inequalities.

Using generalized Lyapunov theory, this paper gives some explicit parameter pertur-
bation bounds that ensure the matrix root clustering in some subregions of complex plane.
In contrast with the previous studies, matrix measure is adopted here. This will enable us
to reduce the conservatism of the obtained results.

2 Preliminary Results
Consider linear continuous time system
@) = A+ E)x@®, (1)
or the linear discrete-time system
@+ 1) =AU+ Ex®), (2)
where z€ R is the state vector, A is nXn system matrix of the “nominal” model, E is the

perturbation matrix. further assume that
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4
E.= EkiEi’ (3)

1 =1

where 2> 0,1 =1,2,',q; are the uncertain parameters, and E;, i=1,2,+,q ; are the
given real constant matrices.

In the following, we denote M;" (M, ) as the set of nXn positive (negative) definite
matrices; Am.(A), the maximum eigenvalue of A; ¢, the conjugate of ¢; | Al » the in-
duced norm of matrix A; p(A), the matrix measure of A induced by the matrix norm
| |l 5 defined by

(AT il Al =1

h—>0+ h

(4

The properties of matrix measure can be found in [7].

Since for a real matrix, its eigenvalues appear as complex conjugate pairs, we limit
our attention here only to the regions 0, and £2,,which are symmetric with respect to real
axis, and including most subregions interested in control theory.

Lemma 1™ Let the subregion {2, defined by

Q.= (A€ Cley + crh 4 cad < 0, 1" + cot® 7 0} (5)
where ¢1o=co. IThen all the eigenvalues of A lie in £, , iff for any QE M, there exists an u-

nique P € M, satisfying the following G.L.E:

P F e ATP + ¢qP A = —Q. (6)
Lemma 210 Let the subregion {2, defined by
0,, = {A€C|500+C10(A+1)+C11A1+ Czu(A2+XZ)<O}. ¢D)

Then all the eigenvalues of A lie in £2;,iff given any Q € M, " ,there exists a unique I’ €
M, satisfying
P + ca(PA + ATP) + ¢ ATPA + ¢y (PA? + (AT)?P) =— Q. (8)
Note that all the coefficients c;; in (6) and (8) are real numbers. Some useful regions
of £2, include the open left half plane, the a shift subregion of left half plane ; while the
useful regions of £2; include circle ,parabola, hyperbola ,ellipse etc. , see [3] for details.
3 Unidirectional Perturbations
In this section ,we study the problem of matrix root clustering under highly struc-
tured unidirectional perturbations,i. e. we implicitly assume that the directional informa-
tion of the uncertain parameters are available. Let the perturbation matrix is characterized
by (3), and define
R = ¢, (EIP + PE;) [=1,...,9; €))
where P is solution of G. L. E. (6).
Theorem 1 Assume that all the eigenvalues of the matrix A are within &, specified by
(5), then all the eigenvalues of the perturbed matrix A+FE remain in {2;, if there exist a
matrix measure p( ¢ ),such that

fon, <_ [l(— Q)‘ (10)
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where ¢n : = iglk,-,u(R,-); and R; is defined by (9).
Proof By Lemma 1, if
coP + co(A 4+ E)TP 4+ ¢ P(A+ E) € M, an
then all the eigenvalues of A+E remain in {2;, In terms of (6), and since ¢y =Cio ,and both
Q and E"P+PE being Hermitian ,we can rewrite (11) as :
A (c1o(ETP + PE) — Q) < 0. a2
From (3) and the definition of R;, (12) can be rewritten as

q
Amir O iR, — Q) < 0, (13)

i=1

By the properties of matrix measure , (13) will be hold ,if

p(Y kR, — Q) < 0. (14)

i=1

We conclude the proof by noticing that (10)is a sufficient condition for (14) to be hold .

Q.E.D.

Clearly ,by the selection of different matrix measure ,and different Q. it is possible to
find the bounds on &; with least conservatism. An iterative algorithm to find such a Q is
presented in [8].

Now that the subregion {2; will be considered . First define

H,: =c,(PE, + ETP) + ¢,(ATPE; + EfPA) + cw{(AE, + EA'P
+ P(AE;, + EA)}, 1=1,",q; (15)
L;: =cuETPE; + ¢, (PEE; + ETE[P), isj = 1,1q; (16
where P is the solution of G.L.E. (8)

Thorem 2 Assume that all the eigenvalues of A are within {2, ,difined by (7), then

all the eigenvalues of A+E will remain in £2;,if there exists a matrix measure ,such that

Pa, < — u(—Q) (17)

g 4
where qonz:=i21k,-,u(H,~)+'_21k,~k,-/.¢(L,-j) ;and Q,H,, and L;; are defined by (8) , (15) and
(16) ,respectively.
Proof As pointed by Lemma 2, if
cosP +¢10((A + E)TP 4+ P(A + E)) + (A + EY'P(A + E)

+ew(P(A+E)Y + (AT + ED'P) € M, (18)
where Pis the solutionof G. L. E. (8) , thenall the eigenvalues of A + E will remainin {2, .
In terms of (8),and since both Q and M being Hermitian , (18) is equivalent to require:

- ik,-H,- + Zq)k,-k,-LU -Q) <o. (19

i=1 ji=1

A sufficient condition for (19) to be held is

#{ ik,-H, + i}k;kjLij —-Q} <o. (20)
i=1

Tl
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Clearly ,(20) will be held if (17) holds . Q.E.D.
4 Bidirectional Perturbations

This section will devote to the case of E being bidirectional, i.e. if E is an admissible
perturbation, then —E is also an admissible onet). To this end ,we still let E defined by
(3), but with

|kl <&, i=1,:,q. Qv
The following inequality is obvious:
p(k Ay < max { [k u(— A)y kil (A} (22)
where A is any real square matrix, and &;is a real number.

Theorem 3 Assume that all the eigenvalues of matrix A are within @, ,defined by
(5), and the perturbed matrix E is described by (3) and (21), then all the eigenvalues of
perturbed matrix A+E remain in £, , if

vp < — p(— Q) (23

g
where Un]:_——i;b;r,‘; r.s =max{#(—R),u(R) }and R;,is defined by (9).

Proof Using inequality (22) ,the proof of this theorem is similar to that of Theorem
1, and is omittd, Q.E.D.

Theorm 4 Assume that all the eigenvalues of A are within {2; defined by (7). and the
perturbation matrix E is characterized by (3) and (21),then all the eigenvalues of per-

turbed matrix A+ E will remain in £, , if

vs, < — u(— Q) (24)
q q

where Unz: ———zllb,h,,+ Zb;bj'nij; h.,': = max{,u(—H,-) 9/-4(Hi) } H

and n;j: = mMax {#(“Lij) Hu(Lij) }

Proof Similar to the proof of Theorem 2.
Although easy to apply numerically, theorem 3 and Theorem 4 are rather conserva-
tive. To further reduce the conservatism, we let

q .
PS: = ZblRi’ S=192"",2‘l; (25)

i=1

Where R, is either —R; or R;,i=1,+,q,and R;is defined in (9).

Theorem 5 Assume that all the eigenvalues of matrix A are within Q defined by (5),
and the perturbation matrix E are described by (3) and (21).Let P,,s=1,2,++,2¢;defined
by (25),denote the 2* possible combinational sums of R;,then all the eigenvalues of per-
turbed matrix A-+E remain in §2;,if

max p(P) < — pu(— Q). (26)

Proof Similar to the proof of Theorem 1. Q.E.D.

For the subregion £, ,we analogously define
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. 5 qﬁ ~ ' 2
T:: = ZblHl+ ZbibjL,'j; & =3 1‘2v"'q2q. (27)
i=1 ivj=1

Where H, is either H;or —H,,i=1,,q; L,is either L or — Lyjsivj=1,2,"" wqiand H,
and L;; are defined by (15) and (16), respectively.
Theorem 6 Assume that all the eigenvalues of matrix A are within (2, defined by

(7) ,and the perturbation matrix K are described by (3) and (21). Let T o=l o0 ,2¢ s de-
fined by (27),denote the 27" possible combinational sums of I, and L.;.then all the eigen-
values of perturbed matrix A+E remain in ,.if
max p(T) < — pu(— ). (28)
Proof  Similar to Theoremb 2. Q.E.D. l
5 Ilustrative Example

Consider nominal system matrix

‘“—8.7 —1.0}
L o1.2 —1.8J

and the perturbation matrix

1 0 044l 0 0
E = 0. 28[ jl—l— 0.6|: jl—l— 0.08[ ]
0 0 10 01

Assume that the subregion II, specified as

I,. = {(x,y) | (x +5.25)% 4+ y* < O}.
Clearly ,all the eigenvalues of A are within II,. From [3], we know that I, is correspond-
ing to {2, defined by (8) with coy=14. 6025, c10=>5. 25,cn=15c20=0, Let @ = I ,then the
solution of G.L. E. (8) is

. ¥ [0. 5071 0. 1467}

Lo 1467 0.4986

By adopting #,( » ) ,we obtain that ¢, =0. 7847 sand —x(—Q) =1, by Theorem 2, all,
the eigenvalues of the perturbed matrix A+E are also within the same region II,. However
,if the theorem 6 of [6] is used ,we have pg =2. 9568 and 0, (Q) =1, and that Theorem

can not be applied . This shows that our results are less conservative.
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