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A Theorem on Dynamic Feedback Linearization in R*”
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Abstract; In this paper, we prove that invertible dynamic feedback linearizability is equivalent
to linearizability by adding integrators for up to 4 dimensional affine nonlinear systems.
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1 Preliminaries

Consider an affine nonlinear system

i=fx)+ Dg@u = f@) +Gxu, z€R, u€R" ¢S
i=1
with f(0)=0 and rank G(0)=m ,

The class of dynamic state feedback transformations are of the form
{w=a(x,w)+B(x,w)v, w € R, a(0,0) =0,
u=a(z,w) + Bz, w)v, v€&R", a0,0) =0

where g is the order of the compensator. The extended system of (1) controlled by a dy-

2

namic compensator (2) can be written as (with = (x,w)" being the extended state)
 f(x) + G@ea(z,w)| [ Glx)f(x,w))
a(I.w) [ B(wi)

If w=a(@)+B(F)v are viewed as outputs for system (3),m characteristic indices ¥,

E:

v = f(z) + G(@)v. (3)

¥, can be defined in the usual way®,
@) Fil<<i<m,s.t. B,,(T)#0,
Ll {min{r;ﬂ iys.t. L Ly 'a(x) #£ 0}, B.(x) =0, VY1
Here we set min & =400, Let
B B..(Z), 7g= O
PR {LEiL;""a,-(f), 7,> 0.
When all 7;are finite the m Xm matrix D(Z) =(8,;,(Z)) is called the decoupling matrix of
the compensator (2) for system (1). We call dynamic compensator (2) invertible for sys-
tem (1) if rank D(0)=m.
The system (1) is said to be (locally) invertible dynamic feedback linearizable, if it

can be transformed into a linear controllable system
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2= Az + Bv, z€ R, veER" (4)
via invertible dynamic compensation (2) and extended state space diffeomorphism
z = ¢lx,w), ¢(0,0)=0. (5)

A special class of dynamic compensators are of the following form™;

u = alx) + B(x)u, detf#0,

)
7

(%
= alx,w) + Blz,w)| i |, (6)
(z )

U ! U

here p=20,1<<i<<m,a(0,0)=0,B(x.w) is of rank m around the origin. and

del Ju77
— d*z
de*’

We call system (1) is linearizable by adding integrators, if it can be changed into (4)

w = (ﬂl PR ,Eil’l) LS 7R vﬁ:(n'“"’))-

via (6) and (5). It was studied in [2,3,4]: some sufficient conditions were given. A -
problem naturally arise; whether linearizability by adding integrators is implied by invert-
ible dynamic state feedback linearizability or not? In this work,, we show that the answer is
positive for up to 4 dimensional systems.
2 Main result
Consider system (1) with n=4 and m=2.
&= f(@) + gy (@)u; @) + g.(@)u, (). ("
We assume that all functions under consideration are defined and analytic in an open neigh-
borhood of the origin.
Proposition 1 If the nested distributions
Ay, = span{g,,sg,}s A=A+ adidy, i=1,2,+ (8)
satisfy following conditions around the origin;.
1) A, is involutive for 0s{/<(3;
2) rank () =4,
Then the system (7) is linearizable by adding integrators.
Proof With [1, Theorem 5. 2. 4] in mind, we need only to consider the following
case; ,
rank(4,) = 2, A, is not of constant rank, rank(A,) = 4. (9
Hence without loss of generality, we may assume that rank{g,, g,.adsg,} has constant
rank 3 at the origin.
Since A, is involutive and of constant rank., we can assume, up to some regular static
state feedback and state change of coordinates, system (7) takes the form™!,
' %= (0, @) 4, (#)a(x),b(x))".

o da
D fen [P 32 [ R S L T T oy g e AR s
Jenote det r}‘) % y é. y one ?15 e X4 =V, an '[)1‘,1 ,a‘IZ “+—U. 1ithout

dry  dr,
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: da
loss of generality, we assume that 57&0. Set
1

a

o 3
B2 &2 aagl'

ax,

one may check that ad;g,’ = (¥,0,0,¢),here Y is some real-valued function.

Since span{g,g, ,ad;gi-adsg; } =4, is involutive, together with the facts that the

; ¢ h & de .
function e is analytic and ¢(0) =0,0ne can deduce that ——=-—==0, and there exist some

dr, dx,
real-value functions p;,qis¢=1,2, such that
Fa | da
ax,dz; ar, " 'O)
) —p,&_ %h'
dx,dx; ox;
This implies that
G G
3z, — az," (10
and
E0) _ %
ar, + 919 = Bk + p.qu. (1D
Consider the following partial differential equation;
ar
5;1(3:) = q:(2) + pr(@)r(2),
|ai(x) — (@) + pr (I, S
)
r(0) = 0.
dr Fr :
By (10) and (11), we get . Therefore equation (12) has (at least) one so-

a0z, 9 x,0%,

lution. Assume r, satisfy (12). Define g,' =g, —rg,’» one can verify that span {g,".,g:",
adsg,'} is involutive and has constant rank 3,and span{g,'.ad;g.'.g. »ad%g, +ajfg,'} is in-
volutive and has constant rank 4, Applying [4,Theorem 4. 2],we know system (7) is lin-
earizable by adding integrator of order 1 to the input channel controlled by g'. Q. E.
D.

Theorem 2 The following statements are equivalent

i) System (7) is locally invertible feedback linearzable.

ii) System (7) is locally linearizable by adding integrators.

Proof ii)=>1) is obvious.

i)=>ii); Suppose some dynamic compensator (2) be such that the closedloop system
(3) is transformable indices by 7,,7,,and decoupling matrix by D(Z)=(d;;)sx2. Let y=a
(x,w)+pB(zx,w)v. Compute®,
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¥ = yi(x,2w) i = 0,47},

= 1 ) 2.
Y = 9 (2, w,v) = ¢z, w) + d;(x,w)v,
d,
Note that D= .
d,
Define invertible feedback transformation
v =D — m). (13)
o,

It is obvious that the resulted system of (3) controlled by (13) is invertible feedback lin-
earizable.

Without loss of generality, we assume 7,22%,221,/=1or 2. It can be verified that the
)
vectors {3;17’].=1 sl;i=1,+,7;—1} are linear independent'). Hence we can define state

space transformation
¥y
W = a4 s I w= w (x,) (14)
ri=1
/]
such that {@’:j = 1,/;w) together with x forms a diffemorphism of (x,w) .
Simple computation shows that under transformation (13) and (14), system (3) will

be changed into

| : Lk i 1 T2 .
i f+ . & 20 s BT
W= 1 AT 0 B (15)
w a(z,w,w) B i)

where (A°,B%) is the Brunovsky pair with controllability indices (¥,,7:).

Note that w does not appear in the expression of £ and 7. Consider the follwing sys-

[x:lz {f—l— z;g;@’i}_l_ |:2j=l+1gi5'i| i (16)

w Aw B%
By the fact that (15) is invertible feedback linearizable and [1, Theorem 5. 2. 4], one may

tem:

verify that system (16) satisfies the assumptions of Proposition 1. Hence (16) is lineariz-
able by adding integrators. Note that (16) is a prolongation of (7), it follows from [2]
that (7) is linearizable by adding integrators. Q.E.D.

Remark Theorem 2 , together with [4, Theorem 2. 2, Corollary 4. 3], shows that
locally invertible feedback linearizability is equivalent to locally linearizability by adding in-
tegrators for up to 4 dimensional systems. Note that if Proposition 1 holds for general case
(n>>4,m>=>2), then by the proof of Theorem 1 we know Theorem 1 also holds for general

case. But whether this is true or not remains unknown.
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