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Abstract: A set of necessary and sufficient conditions under which a general discrete timeH,-
optimal control problem has a unique solution is derived. It is shown that the solution for a discrete
time H,-optimal control problem,if it exists,is unique if and only if 1) the transfer function from
the control input to the controlled output is left invertible, and ii) the transfer function from the
disturbance to the measurement output is right invertible.
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71 Introduction

Optimization theory is one of the corner stones of modern control theory. In a typical
control design,the given specifications are at first transformed into a performance index,
and then control laws are sought which would minimize some norm, say the H, or Ho
norm,of the performance index. This paper considers discrete—tin;e systems ,and focuses on
H, optimal control theory or otherwise known as linear quadratic gaussian (LQG) control
theory. For discrete-time systems ,optimal control theory based on the H; norm was heavily
studied in the 70’s and early 80’s (see. e g.,[1],[2], [3],[4] and [5] and references
therein). This development of H, optimal control theory can be found in most graduate text
books on control (see e.g. ,[6] and [7]). Although a lot of research effort has been spent
in 70’s and 80’s, the conditions for the existence of optimal solutions for a general discrete-
time H, optimal control problem,and a v;/ay of determining an optimal solution if it exists
(again for a general problem), were not known until the very recent work of [8]. Trentel-
man and Stoorvogel in [8],not only obtain a set of necessary and sufficient conditions for
the existence of optimal solutions to a general discrete-time H, optimal control problem,
but also construct one such solution. This paper deals with the issue of the uniqueness of
the solution to the discrete time H, optimal control problem. We develop a set of necessary
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and sufficient conditions for the uniqueness of the solution to the above mentioned prob-
lem. The results obtained here are analogous to those of (9] fox: the continuous time H, op-
timal control problem. £! ‘

The paper is organized as follows, In Section 2, we introduce the problem formulation
of thé discrete time Hj-optimal control problem. while in Section 3,we briefly review the
conditions of the existence of discrete time H,-optimal controllers. The main results of this
paper are given in Section 4. Finally,in Section 5 we draw the conclusions.

Throughout this paper , A’ denotes the transpose of A and I denotes an identity ma-
trix with appropriate dimension. C° and C® respectively denote the unit circle and the open
unit disc of the complex plane . Ker [V ]and Im [V ]denote,respectively,the kernel and the
image of V. Given a strictly proper and stable discrete time transfer function G(z) ,as
usual,its Hy-norm is defined by || G || ;. Also,RH® denotes the set of real-rational transfer
functions which are stable and strictly proper. RH.. dentoes the set of real-rational transfer
functions which are stable and proper.

2 Problem Statement
Consider the following standard discrete linear time invariant system,
x(k 4+ 1) = Az (k) + Bu(k) + Ew(k),
2. yk) =Cix(k) + Diw(k), 2.0
2 (hYrk Ol (k)= Du (k)
where x € R"is the state, # € R"is the control input, w € R'is the unknown disturbance,
¥ € R’is the measured output and z € R?is the controlled output. Without loss of generali-
ty,we assume that the matrices [C;,D;],[C:1,D,],[B',D',] and [E',D',] are of maximal
rank. Also, consider an arbitrary proper controller 25 given by,
S, (b + 1) = JEGR) + Ly(k),
T luk) = ME(R) + Ny(k).
The controller 3r is said to be admissible if it provides internal stability for the closed loop

(2.2)

system comprising 2 and 3. Let T,,(3 X 3¢) denote the closed-loop transfer function
from w to z after applying a dynamic controller 37 to the system 3. The H,-optimization
problem for the discrete time system X is to find an admissible control law which minimizes
| T (ZXZF) || 2. The following definitions will be convenient in the sequel.

Definition 2. 1(The regular discrete time H;-optimization problem) . A regular dis-
crete time H,- optimization problem refers to a problem for which the given plant X satis-
fies ;s

1 (A,B,C,;,D,) is left invertible and has no invariant zeros on C°;

2) (A,E,C,,D,) is right invertible and has no invariant zeros on C°.

Definition 2. 2(The singular discrete time H,-optimization problem) A singular dis-
crete time H,- optimization problem refers to a problem for which the given plant 3 does
not satisfy either one or both of the conditions 1 and 2 in Definition 2. 1.

We note that the regular vs singular characterizations for the discrete time H;-opti-
mization problem precisely correspond to those for the continuous time H,-optimization
problem under a bilinear mapping.

Definition 2. 3(The infimum of H;-optimization) For a given plant 3,the infimum of
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the H,-norm of the closed-loop transfer function T’ (3 X Z5) over all the stabilizing proper
controllers 3y is denoted by 7* ,namely 7* : =inf{ || T (X 3¢ | ;| 2F internally stabi-
lizes >}.

Definition 2. 4(The H,-optimal controller) A stabilizing proper controller X7 is said
to be an H,-optimal controller for 3 if || T (IX 35) | ,=7".

Definition 2. 5(Geometric subspaces) Given a system 2., characterized by a matrix
quadruple ( A,B,C,D), we define the detectable strongly controllable subspace S (3. ) or
S,(A,B,C,D) as the smallest subspace S of R" for which there exists a linear mapping K
such that the following subspace inclusions are satisfied:

A+ KOSSS, Im(B4+KD)CS S (2.3
and such that (A + KC)|R"/S is asymptotically stable. We also define the stabilizable
weakly unobservable subspace ¥ ,(2.,) or ¥,(A,B,C,D) as the largest subspace % for
which there exists a mapping F such that the following subspace inclusions are satisfied;

(A+ BF)Y¥» <%, (C+ DF)V = {0} 2.4
and such that (A + BF)|% is asymptotically stable.

The goal of this paper is to derive a set of necessary and sufficient conditions under
which 3 has a unique H,-optimal controller.

3 Existence of Optimal Controllers

Our intention in this section is to recall from Trentelman and Stoorvogel™ the neces-
sary and sufficient conditions under which an H,-optimization problem has a solution. We
first define the matrices Cp,Dp,Eq and Dy that satisfy the following conditions: i) [Cr,
D, and [Eq' s Dq'] are of maximal rank,and ii)

’
F(P) = ‘[C”,][cp D;] and G(@Q) = [EQ][EQ' Do, 3.1
D Dy
where
S - l:A’PA —P+C/C, C'D,+ A'PB]
: D,/C, + BPA ' D)/D,+ B'PB
and

AQA' — EE' ED, + AQC/
Q Q+ )+ Ql]. (3.3)

D.E' + C,QA'"  D,D/ + C,QC/
Furthermore , here P and Q are the largest solutions of the respective matrix inequalities
F(P) > 0and G(Q) = 0. Also,let

R* ., = (D))" (D' CoQC,' + B'PED,")(Dg')* s (3.4)

where ( + )" denotes the generalized inverse of (* ).

G(Q): ¥ [

The following theorem,which is slightly simplified from the one in Trentelman and
Stoorvegel™, gives the necessary and sufficient conditions under which the infimum, 7" ,
can be attained.

Theorem 3.1 Consider the given system 5 as in (2.1) . Then the infimum, 7" ,can
be attained by a proper controller.of the form (2.2) if and only if

1) (A, B) is stabilizable,

2) (A,C)) is detectable,

3) Im(Eq — BD}R*) © ¥, (5,
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1) Ker(Cp — R*DEC) D S, (Se) s
5) §,(29) S ¥, (3p),
6) (A — BD}R* DEC)S,(3a) S %, (5,
where 2p and g are respectively characterized by (A,B,Cp,,Dp) and (A,Eq,C;5Dg).
Proof It follows from Trentelman and Stoorvogel®™®that the infimum, ¥* ,can be at-
tained by a proper controller of the form (2. 2) if and only if
1) (A,B) is stabilizable,
2) (A,C)) is detectable,
3) Im (E, — BDfR*) € ¥ ,(A + BNC,,B,Cr + DyNC,,D;),
4) Ker(C» — R*DEC,) 2 S,(A + BNC,,Eq + BNDq,C,Dq) »
5) S;(A + BNC,Ey 4+ BND,,C,,Dq) & ¥ ,(A + BNC,,B,Cp + D:NC,,Dp),
6) (A — BD}R* DEC)S,(A + BNC,,Eq + BND,,C,,Do) < V,(A + BNC,,B,Cp
+ DpNC,,Dp).
On the other hand,it is straightforward to see in view of their definitions that
¥ (A4 BNC,,B,Cp + DpNC,,Dp) = ¥ ,(A,B,Cp,Dp) =V (Zp)
and
S,(A + BNC,,Eq + BNDq,C,,Dg) = 8,(A,Eq,Cy,De) = S,(Sa)
since %7, is invariant under a state feedback and S, is invariant under an output injection,
Hence the result of Theorem 3.1 follows. Q.E.D.
4  Main Results
We state in the following theorem the set of necessary and sufficient conditions under
which a given plant X has a unique H;-optimal controller.
Theorem 4.1 Consider a plant 3 given by (2. 1) . Then H,- optimal controller for =
is unique if and only if the following conditions hold:
1) (A,B) is stabilizable,
2) (A,C)) is detectable,
3) Im (Eq — BDER*) S ¥, (2,
4) Ker(C, — R*D3C,) 2 5,(50),
5)8,(2) S ¥, (3p),
6) (A — BDER*D3C))S,(Z) & ¥, (3p),
7) (A,B,C,,D,) is left invertible,
8) (A,E,C,,D,) is right invertible,
where Zr and 3q,as before,are respectively characterized by the quadruples (A,B,Cp,Dp)
and (A,E,,C,,Dqy) . Moreover, the unique optimal controller is given by
€k + 1) = (A + BF 4 KC, — BNC))§(k) + (BN — K)y(k),
u(k) = (F — NC)HER) + Nyk),
where F and K are any constant matrices that satisfy the conditions
A(A+ BF) ©C9, Ker[(Cp+ DoF)(2Il — A— BF) '] =% ,(3p) (4.2)

4.1

and
AA+ KC) S C® Im[(zl —A—KC) W(Eq+ KDg)] = 8,(Z0) (4.3)
respectively, and N is given by
N =— D;y'R* Dg", 4.4
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Also, note that there always exist F and K such that (4. 2) and (4. 3) hold provided that
(A, B) is stabilizable and (A,C),) is detectable (see the construction algorithm in Chen et al
[10]

Proof Our proof involves two stages. In the first stage we obtain a special parameter-
ization of all Hy-optimal controllers (whenever at least one of them exists) for the given
plant 3. The second stage involves the examination of the set of all optimal solutions,
which are identified and parameterized in the first stage,to derive the necessary and suffi-
cient conditions for the uniqueness of the solution of the H;-optimal control problem. Our
development utilizes an interesting reformulation of the H,-optimal control problem which
was proposed by Trentelman and Stoorvogel™. Let us first define an auxiliary system Zpq
characterized by

zpa(k + 1) = Azpe(k) + Bupo(k) + Equweq(k),
2pot yra(k) = Cizpo(k) + Doqwpe(k), (4.5)
sz(k) — CPxPQ(k) + Dpupa(k) s
where Cp,bp ,Co and Dg are as defined in. (3. 1) . In Trentelman and Stoorvogel®, it was
shown that the controller = of (2. 2) is an optimal controller for the given plant X if and
only if 3 when applied to the new system Zpq defined by (4. 5) is internally stabilizing and
the resulting closed-loop transfer function from weq to 2peis —R" , a constant matrix. The
following lemma states precisely such a reformulation of the H,-optimal control problem.

Lemma 4.1 The following two statements are equivalent :

1) The controller 3r as in (2. 2) when applied to the system = defined by (2. 1) is in-
ternally stabilizing and the resulting closed-loop transfer function from w to 2 is strictly
proper and has the H,-norm 7*. Moreover, matrix N in (2. 2) must satisfy DpNDg= —
R".

2) The controller Sy as in (2. 2) when applied to the new system 3pq defined by (4.
5) is internally stabilizing and the resulting closed-loop transfer function from weq to zre is
equal to
—R".

Proof See Trentelman and Stoorvoge

The above lemma shows that obtaining all the H,-optimal controllers for 2 is equiva-

13,

lent to obtaining all the controllers that achieves a constant closed-loop transfer matrix —
R* . Tt turned out that the characterization of the controllers that achieve —R* for Xpq is
easier than that of the H;-optimal controllers for 3. It is well-known (see for example Ma-
ciejowskil™, that the general class of stabilizing proper controllers for Zpo can be parame-

terized as,

tk + 1) = (A + BF + KC)E{k) + By, (k) — Ky(k),

w(k) = FER) + 5, (8) o
and
»n®) = Q) yk) — C:iE) ], 4.7
where F and K are any fixed gain matrices that satisfy
AA+ BF) CC® and AA + KC)) CC9, (4.8)

respectively ,and Q(z) € RH..with appropriate dimension is a free parameter. In order that
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the controller (4. 6) and (4. 7) achieves a constant closed-loop transfer matrix — R* for
Zprq> the free parameter Q(2) must satisfy some additional conditions.

It turned out that with the choice of # and K that satisfy (4.2) and (4. 3),respective-
ly,the controller (4. 6) and (4. 7) achieves constant closed-loop transfer matrix for 3pq if
and only if Q(z) € @ ,where

0: ={Q(k) =Q.(2) + N|Q.(2) € Q,and N € N} (4.9)
and where ‘
0.: ={Q(z) € RH'|[(Cp + DpF)(2I — A — BF)™'B + D;]
+ Q(2)[Ci(z]I — A — KC,) " (Eg + KDg) + Do) = 0} (4.10)
and
N: = {N € R"™*|DpNDqg =— R" }. (4.11)

This claim is proved in the following lemma.

Lemma 4.2 Consider the auxiliary system s, given by (4. 5). Assume that the con-
ditions in Theorem 3. 1 are satisifed . Then, any controller 3, that achieves a constant
closed-loop tarnsfer matrix — R* for 3pq if and only if it can be written in the form of (4.
6) and (4.7) with F and K satisfying (4. 2) and (4. 3), respectively, and some Q(z) € 0.

Proof Let (A4,,B,,C,,N) be a state space realization of Q(z) . It can be shown by
some simple algebraic manipulations that the controller (4. 6) and (4. 7) when applied to
Zpq yields the closed-loop transfer function from wpg to zpg as,

T, qup (2re X 2p) = C(z] — AD7'B, + D, ©(4.12)
where
‘A + BF BC, BNC, — BF Eq + BND,
A= 0 A, B,C, o By= B,Dqy . (4.13)
0 0 A+ KC, Eq+ KD,
and
C.=[Cr + DpF DC, Dy,NC,— DyF], D,= DyND,. (4. 14)

Thus,it is trivial to see that the closed-loop system is internally stable if and only if (4. 8)
holds and Q(z) € RH.. . It is also simple to verify that
7‘ (EPQ >< ZF) == TQ = 7‘0 + DPNDQ

rQ™pPQ

where
Ty =(Cp + DpF) (2l — A — BF)~'(Eq + BNDy)

+ (Cp + DpNC))(2I — A — KC))"W(Eq + KDy)

— (Cp + DpF)(2l — A— BF) '(2] — A— BNC))(2] — A — KC\)"'(Eq + KDy)
and
= [(Cp + DpF) (2l — A — BF)7'B + D;]Q,(2)[C,(z] — A — KC,)"'(Eq + KDy) + Dg].

It follows from Lemma 4. 1 that whenever the controller achieves a constant closed-
loop transfer matrix —R" for 3pq, N must belong to the set N. Also, it was shown in
Trentelman and Stoorvogel™ that the conditions 3~6 in Theorem 3. 1 are equivalent to the
following :

1) Im (EQ + BNDQ) < (Vg(zl’)’

2) Ker (CP —+ DPNCI) = Sg(EQ)a
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3) S,(3) S ¥, (3p),

4) (A + BNC)S,(Z) S ¥, (Zp).

Thus ,following the procedures of Stoorvogel and van der Woude 1'%, it follows that
T, = 0 provided the conditions in Theorem 3.1 are satisfied and F and K are such that (4.
2) and (4. 3) hold. Hence, T, ,q (Zre X 2r) = DpNDo =— R* is equivalent to that T, =
0or Q.(z) € Q, Then the result follows.

Lemma 4.3 If equation DpNDo=—R" has at least one solution ,then it is unique if
and only if the subsystems characterized by the matrix quadruples (A,B,C; ,D;)and (A4,
E,C;,D;)are respectively left and right invertible. Moreover ,in this case,the unique solu-
tion N is given by (4. 4).

Proof It is simple to verify that D,NDq =— R" has a unique solution,whenever it
exists ,if and only if both Dp and Dqare respectively of maximal column and row rank. Fol-
lowing the results of Chen et al. 19 | it is simple to show that the systems % and g are
respectively right and left invertible with no infinite zeros. These imply that Dy and Dq are
respectively of maximal row and column rank. Hence, Dy and Dq are both invertible . Fol-
lowing the results of Chen et al 0t is straingtforward to show that (4,B,C;,D;) and (4,
E,C,,D,) are respectively left and right invertible.

The final step of the proof of Theorem 4.1 proceeds as follows:

(=) :If the H,-optimal controller for X is unique;i.e. , there exists a unique controller
that achieves a constant closed-loop transfer matrix Jpq>then by Theorem 3. 1 conditions 1
~6 hold. It also implies that the set N is a singleton . By Lemma 4.3, conditions 7 and 8
hold.

(<) Conversely,if conditions 1)~6) hold,then Theorem 3. 1 implies that there ex-
ists at least one H,-optimal controller for X, which is equivaieht to the existence of con-
trollers that achieve a constant closed-loop transfer matrix —R* for Spq. Also, following
the result of Chen et al ",it can be shown that the conditions 7) and 8) imply that both
D; and Dp are invertible. Hence ,it follows from (4. 10) that the set @,= {0} and from Len-
ma 4. 3 that the set N is a singleton and is given by (4.4). Then ,by Lemmas 4.1 and 4. 2,
the H;-optimal controller for & is unique.

Finally, it is now trivial to verify from the above proof that the unique H,-optimal
controller for 3 is given by (4.1). This concludes the proof of Theorem 4. 1. Q.E.D.

The following are some interesting corollaries. .

Corollary 4. 1 (The regular case) Consider the given system (2.1).If the following
conditions are satisfied:

1) (A,B) is stabilizable,

2) (A,C)) is detectable,

3) (A,B,C,;,D,) is left invertible with no invariant zeros on C°,

4) (A,E,C,,D,) is right invertible with no invariant zeros on C°,
then the optimal controller exists . Moreover, it is uniquely given by
£(k + 1) = (A + BF + KC, — BNC)§(k) + (BN — Ky,
Cuk) = (F — NC)EWR) 4+ Ny(k),

where
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F=— (B'PB+ D,)D,)""(B'PA+ D,'C,), (4.15)
K =— (ED/ + AQC,)Y(D,D, + C,QC,’)~! (4.16)
and
N =— (B'PB + D,’D;)'[(B'PA + D,'D,)QC, + B'PED," J(D,D,’ + C,QC,/)~!.
(4.17)
Here P and Q are respectively the unique positive semi-definite solutions of the Riccati e-
quations, nth
P=APA+C/C,— (C/D, + A'PB)(D,'D, + B PB)-'(D,'C, + B'PA)
(4.18)
and

Q = AQA' + EE' — (ED, + AQC,)(D,D,' + C,QC,!) " (D,E'. 4 C,QA").
(4.19)
We note that the solutions to the above Riccati equations can be obtained using the non-re-
cursive algorithm of Chen et al™*,

Proof For the system satisfying the above conditions,it is straighforward to show
that all the conditions in Theorem 4.1 are automatically satisfied. The results follow then
from some simple manipulations. Q.E.D.,

Corollary 4. 2(The state feedback case) Consider the given system (2. 1) with C;=1
and D, =0, i.e. ,the state feedback case . there exists a unique H,-optimal cantroller for 3
if and only if the following conditions hold;

1) (A, B) is stabilizable,

2) (A,B,C;,D,) is left invertible and has no invariant zeros on C°,

3) Im (E) =R".

Moreover,in this case,the unique H;-optimal controller for 3 is given by

u(k) =— Dp'Cpx(k) =— (B'PB + D,'D,) ' (B'PA + D,'C))x(k),  (4.20)
where P is the unique and positive semi-definite solution of (4.18). This result coincides
with the one obtained by Chen et all'®,

Proof It follows from Theorem 4.1 and the result of Chen et alf®?

5 Conclusions

In this paper we have derived a set of necessary and sufficient econditions for the u-
niqueness of the solution to a general discrete time H,-optimization problem. We have
shown that the solution for a discrete time H,-optimal control problem,if it exists is u-
nique,if and only if the systems characterized respectively by quadruples (A,B,C,,D,) and
(A,E,Cy,D,) ,are respectively left and right invertible. Moreover,such a unique H,-opti-
mal control law has been obtained.
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