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Abstract: A hybrid method for achieving the generating unit commitment using a functional
link network (FLN) is proposed in this paper. Based on the use of supervised learning neural-net
technology and the adaptive pattern recognition concept, the developed FLN was used to pre-
sume the relationship between power demand pattern and Lagrange multipliers (LMPs). To
demonstrate the effectiveriess of the proposed approach,a real power generation system with 16
thermal units was tested. Numerical results show that the system production cost was minimal
and the time taken for processing the unit commitment scheduling in power systems was re-
duced.
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1 Introduction

Most of power system operation planning tasks can be finally reduced to solving com-
binatorial optimization (mixed integer programming)problems that include a number of in-
equality as well as equality constraints ,such as unit commitment,they belong to the class
of NP-complete problems. An enormous amount of computation is necessary to solve such
problems for large power systems. This emphasizes the strong need for making some
breakthrough.

Electric power systems have the following features in common ; production is simulta-
neous with consumption and both surplus and shortage of power supply may cause unde-
sired voltage and frequency. A balance must therefore be maintained between power supply
and power demand.

Unit commitment,a power generation scheduling problem, involes determination of
the hourly start-up/shut-down schedule and the output levels of all generators in order to

meet forecasted hourly demand per day and to minimize total operating costs,the sum of
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setup and fuel costs for a given day. In general, to solve the problem is very difficult and
time consuming. Major solution methods proposed so far may be classified as;1) Dynamic
progrérrﬁnihg L ,Zj Branch and bound method™,3) Mixed integer programming™land 4)
Lagrangian relaxationt*,

Among them,method 1)~3) are not practical since computational burden and storage
requirement will be dramatically increased with the number of generators. Although the
last method is effective to a large power system,it depends on how the values of LMPs are
determined.

ANNs possess the ability to perform pattern recognition,prediction and optimisation
in a fast and efficient manner after they are sufficiently trained. Applying ANNs to power
systems is of rather recent origin'*. In this.paper,the LMPs are estimated by using of the
FLN), Numerical results show that the LMPs estimated by the FLN are applicable to the
above problem.

2 Problem Formulation

Unit commitment can be defined as to determine an optimal pattern for the start-up
and shut-down of generators that minimizes the total operating cost during a study period
while maintaining a suitable amount of spinning reserve. Assumptions usually made in
solving 'this problem are®® ). 1) Power demand during each period is constant and given;
2) Transmission losses are neglected; and 3) Spinning reserve is specified. Under the
above assumptions,unit commitment can be formulated as follows:

Objective function Suppose N is the number of generators, 7" is the number of peri-
ods under study, v, is decision variable for generator

N T
A b d B yw) = D0 D LCHKR) 4 Sikisvi) ] (1

i=1 t=1

where C;(P,,) is the presentation cost function of generation output p and S;(z;,v,) is the
startup/shut-down cost, expressed as a function of both state variable z;, and decision
variable v;, .

" Constraints a) Power balarnce

N
Yo PumiDiay ti= 1325 22T (2)
i=1
b) Limits on generator output
Ui Prini < Pii < 0Prayie 3
¢) Operating constraints;
: Minimum up timeé constraint v, = 1,for 0 < x;, < mut (7). (4a)
; Minimum down time constrdint = v, = 0,for — mdt (i) <z, < 0. (4b)

3 Lagrangian Relaxation Method
An efficient method for solving the problem is based on a dualization, using the la-

grangian relaxation method. The dual function can be formulated by adjoining the demand
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and supply balance constraints to the objective function,introducing LMP 4, . The dual

function is expressed by

T N
g = minlJ (p,v) + SIAWD, — 2] (5)
o =1 i=1

We then have the following dual problem
max g(A), subject to (3) and (4). (6)
A

In view of the separable structure of g(A),the dual function can be rewritten as

g = Zq,m + EAD (N

i=1

where the functional value of ¢; determined by solvmg the following subproblem 1 with
LMPs fixed.
, Subproblem 1

T
gD = n;inE[c,(p,» + Si(xie>vi) — Abuls (8)
V=1

subject to (3) and (4).

The LMPs are updated by using the subgradient method

After the start-up/shut-down schedule is fixed,a continuous problem is economic load
dispatch,which could be solved by using the principle of equal incremental fuel cost.
4 The FLN and GI Learning Algorithm
4.1 The FLN Architecture

An FLN is a new network architecture con51stmg of a flat net with no hidden-layer
nodes. The basic idea behind an FLN is the use of links for effecting nonlinear transforma-
tions of the input pattern before it is fed to the input layer of the actual network. The es-
sential action is therefore the generation of an enhanced pattern to be used in place of the
actual pattern.

The architecture of this type of net is depicted in Fig. 1.

Input patterns are enhanced by nonlinear output
representation,so a flat net is used with no hid-

den layers. There are two models for the FLN,

namely the functional expansion model and the

_..\'

L x Iy Nounlinear enhancements
fects are obtained depending on the details of of original iuput patterns

tensor (or outerproduct) model. Different ef-

the model used. Also the models may be used
in tandem to great offoet! Fig.1 Schematic illustration of the functional-link net
4.2 GI Learning Algorithm

Let us consider the possibility of learning with a flat net. After the input patterns are
expanded, a single layer neural-net is merely constructed. Let there be P associated input-

output pattern pairs, (X, Y, (XY, (Xp,Yp) s each with N elements ,where X, has
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been expanded ( = 1,2,:+,P), which is associated with the output by the matrix M =
(M;;) . That is
MX,=Y,, k=1,2,-,P. (9)
Let
X=X, Xp)y "Y' =1(T,Y,),Y5).

Thus the equation (1) becomes

MX =Y. (10
Using the Moore-Penrose GI method,we then have
M=YX", an

where “ % ”indicates GI.
Computer realization of M is obtained through numerical recursion. Let
X(k) = (Xl P ’Xk) ) Y(k) = (Yl [ R ,Yk) ak =1 92 PR ,P

thus £ th recursion of M is as follows

M® = ybY®r — pre—D __ pr—1 __ m + le—b—/;- (12)
where
_ (ECRemIFa (GrsEl05
by = L e - A tas (13)
(’Cl + dzdk)—ldEX(h_l) ’ Cle =0,
EI! ol Xk il X“_l)au . : (14>
and 4, =X%V 4+ X, 15)

The first pair (X,,Y,) is fed to the FLN to yield the initial recursion value of M ,that

MY =Y (XTX,)7'YT. (16)
Thus M is obtained through recursion until all patterns are memorized, via P recur-
sions. So M = M‘” . Therefore if P pairs of patterns are available to be fed to the FLN,the
associated matrix M can be obtained. Compared to the delta rule,the method has a faster
convergence rate since it avoids repeating the presentation of input patterns in delta rule
learning. This will be illustrated in the following section.
5 Numerical Results
In order to demonstrate the effectiveness of the proposed method ,the simulation pro-
grams written in C was performed on an 80486 DX —80mbhz. For the Guangzhou power sys-
tem, consider 16 supplementary thermal units (N = 16) over 24 (I" = 24) periods. The
FLN architecture used for this problem consists of input and output layers with 24 original
input/output nodes ,respectively. Proper training is a vital part of the application of FLN,
For training purposes the training set {D,A} must be prepared according to past records.
The set can also be obtained from application of the Lagrangian relaxation method to the
presentative power demand patterns. The selected load demand profiles represent typical

operating circumstance of the studied power systems. Since the output from each neuron is
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determined by the sigmoidal logistic function,each element of a training pair must be nor-

malized between 0 and 1. The final output levels are shown in Table 1.

Table 1 The final output levels (units :MW)
Hour|1 2 3 4 5 6 7 8 § 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48 48_48
2 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46 46
3 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49 49
4 0o 0 0 0 0 0 0 0 0 0 0 0 O 0o 0 0 0 0 0 0 0 0 0 O
5 39 390 39 39 39 39 39 39 41 41 41 41 41 41 40 40 40 40 40 42 42 40 38 38
6 40 40 40 40 40 42 42 42 42 42 42 41 35 37 40 40 40 40 40 40 1}0 39 38 38
7 O 0L 0. 10k <0k 0020 0s w0hs 000830 050,10 0p pa08 0RO 0 A0 LFOT0M 0
8 28 28 28 28 28 28 28 28 28 28 30 30 26 26 28 28 28 28 28 30 32 26 26 26
9 34 30 30 25 25 32 32 34 34 34 34 34 32 32 32 32 32 32 32 35 35 32 30 28
10 o0 0 0 0 0 0 0 0 0 O 0O 0O O © 0 0 0 0 0 0 0 0O 0 O
11 |25 25 24 24 24 24 27 27 27 27 27 27 25 25 25 25 26 26 28 28 28 24 24 24
12 |15 15 15 15 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 18 18 16 16 16
13 0 0 0 O 22 22 22 22 22 22 22 22 22 22 22 22 24 24 24 24 24 24 0 O
14 0 0 0 O 10 10 10 10 12 12 12 14 14 12 12 12 12 12 12 14 14 12 10 8
15 (11 0 o 0 11 11 13 13 13 13 13 13 13 13 13 13 13 13 13 14 14 12 0 O
16 7 0 0 8 8 8 8 8 8 10 10 10 10 10 10 10 10 10 10 10 12 12 8 7

© Conclusion

In preatice, the short term unit commitment often requires a method that is fast to
meet system changes and reduces the scheduling errors. With a trained FLN ,a fast and di-
rect assessment of LMPs has been obtained. The numerical results indicate that the present

method provides and alternative for unit commitment practices.
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