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Abstract: A method for identifying a class of non-linear distributed systems is presented by
using two -dimension block-pulse functions. An error analysis for the approximation is empha-
sized and made. The optimal selection of the numbers of the truncated terms is discussed by us-
ing non-linear integer programming. Appropriate examples are included to illustrate the ideas.
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7 Introduction

The identification of non-linear distributed parameter systems (DPS)is more difficult
than that of linear DPS. But at present,the identification of non-linear DPS has become an
important problem in modern control engineering and many other areas. A few researchers
have studied the problem by using Walsh functionst!,block-pulse functions!®,and Laguerre
polymonialst®. A critical review for all these publications was given in [4].

In this paper, the problem of non-linear DPS identification via two-dimension block-
pulse functions is considered as usual. An error analysis for the approximation ts emphasized
first,it seems few papers have noticed the problem. Based on the analysis,a non-linear inte-
ger programming model is established to select the numbers of the truncated terms so that
the approximation error may be less than a given error level and the balance between the
number of measurement points and sample period may be attained. Two examples are given

to illustrate our work.

2 Preliminaries
A set of two-dimension block-pulse functions is defined as !
1, (G—DL/M<Cxz<IL/IM, (j— 1DT/N<<t< jT/N;
B, Gl 20 = G B (D , 3 / pin 2. 1)
0, otherwise,

A function «(x,¢t) which is absolutely integrable in the region £, & {(x,8) .0 {2 <L L, 0t
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< T} may be approximated as
M N

M N
u(x,t)zzzui,Hi,<x,t>=z wyH () H,;(0) = Hy@UHy @ (2.2)
1

i=1 j=1 i=1 j=
where © means transpose, and U = (u;;)) uxn s the two-dimension block-pulse function coeffi-

cient matrix of the function ulx,t) Hy(x) = (Hl(x),---,HM(x))',HN(t) = (H, @),
Hy@))m

The coefficients u;; minimize

M N
e= [ute) — ) 2 Hi@uH, @ | T (2.3)
i=1 j=1
which gives
wy = YN [[uiairdzde, 1<i<M. 1< <N, (2.4
a4,

A {(z,): (i — DL/M < xz<iL/M,(j— DT /N <t < jT/N} ;Hence, u; is the

where 4;;
integral mean value of u(x,t) over the subregion AV

Hy(x) and Hy (¢) have the following properties[5]7
fHM<x)dx — PuH (2 2.5
0
JIHN(t)dt — PyHy () (2.6
0

where Py and Py are both known matrices.

Using properties (2.2), (2.5) and (2.6),we getl?

jx---r J -~-J‘u(1,t) dz---dx dt---dt == Hy (x) (PO UPKH N (1) 2.7
\0 0JO 0 — —
atimes B times a times A times

Using properties (2.1) and (2. 2),we get
wr (1) =~ Hy (x)LHy () with L= [ uxn> Ly =ui (2.8
3  Error Analysis
Although {u;;} given by (2. 4) minimize the integral square error € in (2.3),they are de-
termined just in the condition of given M and N . Suppose one require € be less thar a certain
index (say & ).In general ,the inequality
e & 3.1
is hardly held for given M and N if &, was smaller. Therefore ,how to select M and N such that
(3. 1) holds remains one problem. On the other hand, u(x.¢) in (2. 4) is unknown,but dis-
tributed measurements may give the information of it. As all known ,it is impossible to make
distributed measuremeats physically. Point-wise measurements are often used. So.using
point-wise record in the subregion 4, to determine #;; is necessary. This will introduce errors
to u,;; »hence affect the accuracy of approximate expression (2. 2). However , the effect of
these errors may be alleviated by proper selection of Mand N . In the section ,the problem is

discussed ,and a formula estimating error € is deduced based on point-wise measurements.

Theorem 1 Assume u(x,t) € LA(E,)) , with g—;,%ﬁ— continuous on L(E,) . Then
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24MN, s £ (u.,+u. i ud o e = 2ttty ey — Qi1 sy

where u; = u(z;,t;) are records of u(x,t) in x; and at #;.

Proof Let ¢, such that

N
2c

1 j=1

!
=

i

where

= || ulx,t) — Hy(x)UHN @) | izm‘_i).

It is easy to show!®

Hu (x,t)dxdt — T [Hu(x t)dxdt 2,

I 'l
From Taylor formula,we have

u(zyt) = u(Zioyatyn) + 5 u($,,77,)(x il Dlsls u(E,J},)(t tj)
where
iL iT
-szﬁa ti:ﬁ’ €i=xi»—1+€1(\r—xi—1), 77j=tj—1+02(t—tj—])s

0<6, 6,<1.

Substituting (3. 5) into (3.4),and using the continuity of %,% ywe get

LT LT?
M°N 12[3“(“:' SISy v

€ [—“(-T: 19bj— 1)]2

du du .
Using second order difference scheme to approximate ” and =, gives

a M _~ ~ £ Az
a—ru(x,'_lstj—l) = 2—14[uij — Uiy, + Ui j—1 — ui_l-j_l:l’
d N ~ = M =
gu(x, l’tj—l) ~ ﬁ[uu = a e —+ Ui—1,; — ui—-l.j—l:l'
Then (3. 6) becomes

1 LT

S 24 MN[ 5+ u, 1j h u,J y + u, ~ oD = Z;fj;fq‘jﬂ TE 2;,‘—1.;’;.‘.;-1]-

Substituting (3. 7) into (3. 3) gives the result (3. 2).
From (3. 2),o0ne can easily determine M and N such that (3. 1) holds.

75

(3.2)

(3.3

(3.4)

(358)

(M — o0, N — 00),

(3. 6)

3.7

Remark Theorem 1 is a revision of Theorem 3. 6 given by [5],but the former is more

direct and useful in estimating error.

Example 1 Consider the following non-linear partial differential equation

a, - 2 + a); — a + a3u2(-r t) == T’(I,t)q

u(0,6) =0, 0<Kt<<1l, u(x,0)=0, O0<x<1

where a, = 2,a;, = 1,a; = 4 ,and r(x,t) = 2x 4 42°* + ¢. It can be seen that u(x,£) = xt.

Now ,given records {u;} of u(x,t) in x, and at 7, and let u,; in (2. 4) equal to it,i. e.
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u,,=1/M><]/N, i=172""9Ma j::1929"',N-
Using (3. 2),one can select M and N for a given & . The results are listed in the Table 1.

4 Identification Process

Consider a non-linear time-invariant Table 1 The selection of M and N for a given &

distributed parameter system described by €0 M N MN
g . R 0.1 2 2 4
the following second-order partial differen- . .
tial equation = %o 2 — :
Fu (x,1) Furs(x,t) 3 2 6
@ r T AT gy o e N R St Y
Furi(x,t) duli (1) 0.001 6 11 56
+ as axat’ +a— 7 8 56
qubs (x ot 8 7 56
+a5————)+au’6(r t) 9 7 63
= rP1(x,t) 4.1) : :

where p;(i = 1,2,-++,7) are integers and a,(G = 1,2,**,6) are unknown parameters.

Integrating (4.1) twice with respect to t and twice with respect to x , one obtains

alrJ‘ uh (z,t)dzdx + azj J ut2(x,¢)dedt + aaj J- uts (z,t)ydedx
0J 0
-+ aaj.’r I.‘ whi (2, )dedada —+ aﬁj 'r [ whi(x t)dxdede

e u.:,J-;j‘,J' J wh (et )dadadedt — a J J fla)dzdz — d,J rg(r.)d.tclr

= agu”S(O,O)J‘B szxdt — Jl erih(x)dxdxdt — Jl th s()dadeds
0J 0 0J 0J 0 0J0J 0

=J.l JI Jxrr’” (x,t)dxdaxdedt 4.2)

040

where
flx) = uh(z,0), gh) = w2 (0,2)

dul (x,t) dur(x450)
h(x) = a, TR ¢=o+a3T+a4u“(.ﬁC,0),

14
W zst) )y, Q“_‘_(_O_Q X awt0.1).
ax
We now approximate afi (et ='1:24:%365% ‘(1,0),u*z(o,t),c = agu’(0,0).h(z),

s(¢) and 7’7 (x,t) in terms of block-pulse functions ,substitute the approximations into (4.2)

s(t) = a,

and make use of properties (2. 5)~(2.8) to yield
a,(Py)*L; + a,L, Py + as(Py)LsPy + a, (P LyPy + as(Py)Ls P% + as(Py)’LeP%

— (P3)? LfE - }Jg,E P — cD — (Pi)? ZhE Py — Py ?‘sE P
i=1 1
where

Lk :[lkij]MxNa lkij = ',!;—hi k == 1,21"'169 L7 — l:l7;j]MxN9 17,1 == r:’; '

LT =l =
D =[dfj]l\1XN9 a.',j = MT\? 2t 1)4(2] 1)
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L M
f: =a.fi, fisuch that b (z,0) = E fiH (x),
i=1

B N
g, =ag;» g such that «%2(0,0) = > g,H,(®)

Jj=1
and E;;is an M X N matrix having the (i7) th element unity and the remaining elements zero.

Now (4. 3) may be rewritten in the form

A=V ! (4.4)
and 8 can be obtained by using the least-square technique ;
0 = (A"A) 'AV p (4.5)
where A= {a,} € RM*K  gg RFX, V€ RMWxI

The value of K depends on specific problems:

Case 1 If the initial and the boundary conditions in(4. 1)are both knoéwn,then K = 6.

Case I If the initial condifion in (4.1) is known,then K = 7 + 2N.

Case T If the boundary condition in (4. 1) is known,then K = 7 + 2M.

Case N If the initial and the boundary conditions are both unknown,then K = 7 4 2M
4+ 2N.
5 Selection of M,N

In theory the greater M, N are,the less the error caused by approximant (2. 2) is. This
means that more measurement points and smaller time mterval At are needed. In practlce,
this requires more sensors G.e. M sho‘uld be large) yand be_tter high speed sampling perfor-
mance of measurement system. This would be expensive. Therefore,how to attaiﬁ ';he bal-
ance among the accuracy of approximant (2.2), the solvability of equation (4.4) and the ar-
rangement of measurement points is a practical problem we should study.

Let the cost function,which is related to M and N ,be C(M,N). Note that relatlon (4.
4) is solvable if and only if the rank of matrix A is equal to K (the number of parameters to
be identified). That is,the following condition should be held

MN = K, G.1D
Suppose the accuracy index be €. Thus,we can establish a non-linear integer program-

ming model

min C(M.N), (5. 2)
.MN>K,e<eg, M>0, N>0, both are integers. )
Using the techmques of operational research,one can find out M* and N* —— the opti-

mal selection of M and N —— which minimize the cost function C(M,N).
Example 2')  Consider the non-linear distributed system described by

; duxyt) e il (x,t)
V9 o

u(x,0) =0, u(0.,t) =
witha, = 2, a, = 2, and a; = 1, r(x.¢) = 4x%t -+ 2t + xt. For given records of u(x ) and

doaulzst) =r(z,t) (O<Lxz<L1,0< <D,

r(x,t) »the problem is to estimate the #(2.0) and the parameters a,,a;,a;. Suppose C(M,N)
= 9M 4+ 5N + 10MN and & = 0. 01.
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From Section 3 and 4,we may select M >2,N >2, and K = 4 + M, thus,have the mod-
el
min C(M,N) = 2M + 5N + 10MN,
s.t. MN>4-+ M, M>2, N >= 2, both are integers.
The solution of model (5.3) is M* = 4, N* = 2, i.e. the measurement points are located in

0.25,0.5,0.75 and 1. 00; the sample period At = 0.5. Using the algorithm mentioned in

(5.3

Section 4,we get estimation values of parameters and initial condition as list in Talbe 2.

Table 2 Estimated results of parameters and initial condition

Parameter a, a, a; b, b, b b,
Estimatgd values 2. 0817 1.9998 1. 0003 0. 0007 0. 0051 0. 0087 0.0103
Estimated values® 1.9999 2.0625 1. 0000 0. 0005 0. 0044 0.0122 0. 0239
True values 2. 0000 2. 0000 1. 0000 0. 0000 0. 0000 0. 0000 0, 0000

% The results obtained by Hsu and Cheng (1982).
4
%% b;,i=1,2,3,4 is the block-pulse function coefficient of #(x,0) = zb.-H,-(x) ,

j=1
Comparing the results with that given by Hsu and Cheng, one may find that the same

results are obtained,but here used fewer M and N .

6 Conclusion

A method to indentify non-linear distributed systems is presented by using two dimen-
sion block-pulse functions. A modified algorithm is proposed. The error analysis for the ap-
proximation , which seems few researchers have noticed it,is emphasized first. A formula es-
timating error €is deduced based on point-wise measurements. Specially,a non-linear integer
programming model is established to held select the values of M and N . Examples show that

good estimation results may also be gained by using fewer M and N.
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