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Design of Global Robust Self-Tuning Controller for
Multi-Input Uncertain Nonlinear Systems

LU Souyin, JING Yuanwei and LIN Xiaoping
(Department of Automatic Control, Northeastern University* Shenyang, 110006, PRC)

Abstract; In this paper we consider the robust stabilization problems of multi-input nonlinear
systems with the time-varying uncertainties shich enter linearly, and give the robust stabilizing self-
tuning controller.
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1 Imntroduction

Consider uncertain nonlinear system:
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Necesary and sufficient condtions for bringing a general uncertain nonlinear systems into the
form (1) via a nonlinear coordinate change are given in [5], and which of the single-input case is
given in [2].

Within the last few years, there has been an increasing interest in the problem of the robust
control!'). In the special case of time-varying disturbance or parameter, few results are available
([2]) for stabilizing the uncertain nonlinear systems. Marino and Tomeil?! studied the robust
stabilization problem of feedback linearizable time-varying uncertain single-input nonlinear systems
[x = f(x) + q(x,8(t)) + g(x)u] . They give a local (global) robust stabilizing state feedback
controller under three assumptions: 1) the nominal system (f, g) is local (global) feedback
linearizable; 2) the uncertain vector g{x, 8(t)) satisfies coordinate-free triangularity condition;
3) the unknown vector & takes the values in a known compact set. But they only discussed the
feedback linearizable uncertain nonlinear systems with signle-input.

Now the problem in question is to design a smooth state feedback controller, so that the
closed-loop system is globally asymptotically stable at the origin for every 6(¢), that is, the
global robust stabilization problem.

2 Main Results
In this section we shall discuss the robust stabilization of the multi-input nonlinear system.

First we give the following lemma:

Lemma 1 For the system 3/(1,1), "',Ej:(l, 1) (defined as (1), j = 1, -, r; with inputs

1
v = z’,-l“ . if Q is a (unkown) compact set, then there exists a global state feedback self-tuning

controller such that the closed loop system is globally asymptotically stable at the origin for any 6
€a.

Proof First let us construct the Lyapunov function of each subsystem Z-"(l, 1).
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Step 1 (l 1) Let z! z} and define the Lyapunov function

Vi(1,1) = S(2))* + ( 132, where &} = pj — 2], pj is a suitable constant, £ is a function

of ! yet to be determined, &' = (Z},,z} )T. Then the time derivative of the Lyapunov

function is
i
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Step ¢{(1,1) Similarly to Step 2(1, 1), assume that we have defined the Lyapunov
functions V:-‘(l,l), h=1,,¢t1—1,7 =1,,r,, and proved that
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Since 95;:_,. is a smooth function, ¢;l_,-(0, *=+,0)=0, and (2), (4) and (7) hold, one can write
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Now define the Lyapunov function as follows:

1
N
V= DD, Vh

i=tLh=1
Then, it follows from (3), (5) and (9) that the time derivative of V'; becomes
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As a result, the equilibrium point z =0 is globally uniformly asymptotically stable ([41).
Since z is related to z by thetransformations (2), (4), (7) and (8), it follows that z =0 is

globally uniformly asymptotically stable equilibrium puint.

Lemma 2 For the systemsEJl-(l,l),"',2}:(1,1).'",Ej:”(Z,l),-",Eji(Z,l),j =1,
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ri and 3j(2,2), -, Ej:(2,2),j = ry+1,, r; (defined as (1)) with inputs y; = z;:“ . Qis
a compact set, then there exists a global state feedback self-tuning controller such that the closed
loop system is globally asymptotically stable at the origin for any § € Q .

The proof is simillar to that of Lemm 1, and here it is ommitted.

Theorem 1  For the system (1), if £ is a (unkown) compact set, then there exists a global
state feedback atabilizing self-tuning controller such that the closed loop system is globally
asymptotically stable at the origin for any 8 € 02 .

Proof by using the method of constructing the Lyapunov function given in Lemma 1, one
can construct the Lyapunov function V¥ (g, 7) = —( zh)? + —( ) where g} = uf - ph, ulis
a suitable constant, /}j' are self-tuning functions yet to be determined, for each subsystem
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Define the Lyapunov function of the systerm (1) as follows:
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And let f‘}“ =0,i.e.

£ t
E'f“ — z}tr"'l)'

” =wv, j=r.-L,rpgr=1,s.

Then one can get

V<-el &2 =-¢cllzl?
with €20.

As a result, the equilibrium point Z =0 is globally uniformly asymptotically stable ([7D.
Since Z is related to z by the transformations (10), it follows that z =0 is globally uniformly
asymptotically stable equilibrium point for the system(1).

3 Conclusion

This paper has discussed the state feedback robust stabilizing problem for multi-input time-
varying uncertain nonlinear systems whose nominal system is globally feedback linearizable. A
feedback controller which globally stabilizes each system in the family is constructed by a recursive

algorithm.
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