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Abstract; We study a tandem two machine system producing one part type. The machines are
subject to failures. A policy called surplus control which features two threshold levels, each for
one machine, is used to regulate the productipn. We propose a simple algorithm based on pertur-
bation analysis techniques to estimate the gradient of a cost functional. It is proved that this esti-
mate is unbiased. Examples are given to demonstrate the algorithm.
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1 Introduction

Threshold control policies have been proven to be effective in regulating production of
manufacturing systems with unreliable machines!’~*, An important feature of such policies
is simplicity. To optimize the system performance, one only has to calculate the optimal
threshold values and this is done “off-line”. The “on-line” control actions are simple: when
certain variables that represent the system states, e. g. Work-In-Process (WIP) levels at dif-
ferent stages, exceed their corresponding threshold values, the production of those stages
should stop, otherwise, they should work as hard as they can. Kanban system is a noted
representative.

In this paper, we consider one of such policies dubbed surplus control proposed in [4].
Under this policy, the states of a manufacturing system are surplus levels, as defined in the
next section. To select the optimal threshold values so that a cost functional can be mini-
mized. one has to calculate the gradient of the cost functional with respect to the threshold
values. The gradient may then be used to minimize the cost functional. We propose a very
simple algorithm based on perturbation analysis techniques™*® to estimate the gradient. We
show that our estimate is unbiased. That is, The expectation of the estimate is equal to the

true gradient.

# This research is partly supported by NSFC,“863” Project in China and URIF, NSERC and CIDA.
Part of this paper appeared the Proceedings on the 31th IEEE CDC.
Manuscript received Jul. 24,1995, revised May 15,1996.
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2 ‘The Model and the Policy
X x 2

We consider a tandem two machine system U s d
. ——mmd WS, —-O—— WS 2

producing one product (see Fig. 1). The machines

are unreliable, each having two states, up and
down. Two buffers, one placed after the first ma- Higy Il Sndemitnornsshinelavatem
chine M, and the other after M,, are used to store parts. The production rates u; and u; are
control variables that have to be properly regulated to minimize a cost functional defined later
in this section.

The system can be described by the following equations

x.(t)=u.(t)_d9 l=1929 (1)
zl(t)sz(t), (2)
O<u;(t)<U;a;(t), i=1,2. 3

The machines are unreliable. The state of M;,i=1,2, is described by ;(¢), a finite
state Markov process called machine process. «,(2)=1 if M;is up and «;(¢) =0 if M;is down.
The up times and down times are exponentially distributed with average up time being 1 /pi
and average down time 1/r; for M;,i=1,2. Denote a(¢):= (a1 (), (¢)). The production
rate of machine M, is #;(t) and can be adjusted to any value between 0 and U, if M;is up. For
the simplicity, we assume U,=U,=U. Further, d is a constant demand rate. x,(¢) and
2,(¢) are called surpluses for M, and M, respectively. They are defined, as seen from Egs.
(1), as the difference between the cumulative production at M; and the cumulative demand
for the system, i=1,2. The initial conditions are x,(¢) =z,() =0 and &, (t)=a,(¢)=1. The
objective is to minimize the average cost during a finite period T, as defined in the following

equations
T
Jr=E %JO Leib@) e xf @) +cz x7 () 1de

where 5() =z, () — 2, () a7 (¢) =max(z,(),0) and z; (¢)=max(—z,(),0). Constants c;
and ¢} are inventory cost coefficients for M, and M, respectively, and ¢; is the backlog cost
coefficient for M,.

Intuitively, our objective is to adjust dynamically the production rates u; and u, (of
course only when the machines are up) so that both inventory and backlog cost (negative

x;) can be minimized. The control policy is called surplus control and is defined ast*l,

U,, t)<h,,b()>0,
U1s xl(t)<h1’ ‘ i IZ( i

ul(t)= dy Il(t):hl, uz(t)z‘
0, = @W>hy,

d, x, () =h,,6(t)>0,
lo, 3 (E) >Ry
u (), x,(B)<hy,6() =0,
where A;is a predetermined threshold, i=1,2.
Apparently, after the SC policy is selected, to optimize the system performance, i.e. ,
to minimize Jr, the only thing one needs to do is to select the optimal threshold levels h; and
h,. As we explained earlier, the purpose of this paper is to derive the gradient of Jr with re-

spect to &, and h; using perturbation analysis (PA) technique. One may then use the gradient
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to calculate the optimal threshold values.
3 Perturbation Analysis

Since the initial condition is giv-
en (r;(0)=x,(0)=0, a,(0)=a,(0)

=1), the sample path ()= (z,; (),

. N |

path is shown in Fig. 2, where gorq1»  pyf '
- - 1 /1

- and s¢,5;,°* denote the transition  haf i LN

|
%0 s e e
xz(¢)) is uniquely determined by the "’1 1 : 1 l
. |
machine process a(¢) and the thresh- - : —+— E - E 7 ¢
old levels A=C(h.,h,). Such a sample I } : : i
| 1
|
i
|

1
)
i
|
[
Wa s
instances of @, (z) and a, (¢) respec- fo ho BNy BTy s

X2 (l) tio
tively. Each such transition is called

an event and t¢+%;, *** denote the in- Fig. 2 Sample paths
stances when events take place.

The PA approach is to observe one sample path (called nominal path), which is ob-
tained either from experiment or simulation under a set of parameter values (in this paper, A,

and k) and to derive the gradient of the cost functional. Let us denote the cost functional

T

obtained from a single sample path as'Lr(h,a) i.e. Lr(h,a)= % J‘ Leb () +efxf () +
0

c; x7 @)]dt. Thus, Jr(h)=ELr(h,a). As stated earlier, we would like to compute alr(h)/

. We will show that based on a single sample path, a simple algorithm which consists of
integrals of indicator functions will provide 3Lr(h,a)/ah which will serve as the estimate of
aJr(h)/3h. Then, one important issue is to show that this estimate is unbiased™. It will be
shown that this is indeed true for our system. That is

Theorem 1 For the system described by Egs. (1)~ (3) with SC policy, we have

Ly (h,a) 3 {aLT(h,a)

E > =%ELT(h sa) and E 7 <o

The proof is given in the next section,
4 The Proof of Theorem

For any fixed T', there exists an event number N, s.t. ty<<T<(ty;,. Apparently, N is

a non-negative random variable depending on machine process a(z). Denote the number of
state changes of M;in [0,ty] by Ni. Let &7 =gy 1—qus 1 =quis—qur196205 2i+2<Ny;
T i — Sais Mo =gy Spip198220,2{+2<N,. So &' ~& and &' ~7;, where § and 7
are the random variables describing the up times and the down times for M;,i=1,2. Assume
{z°z's+* 2™} be the sequence of system state with respect to {¢,s¢15**s¢n}. Denote v=U—
d, then

Lemma 1 For the random variable N s.t. EN<{co,

Proof Because «;(2) is an alternative renewed process, T is finite, 0<CTE&;, 0<<E7;,i=
1,2, by renewed theory™, the result is clear. Q.E.D.

To further facilitate the proof of Theorem 1, we need the following definitions
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o z;(t) reaches h; at t; if z;(#)=h;and 3 At>0, s.t. i (D)<hi,¥ TE @E—At2).
»  M,is starved at ¢; if z; (@) =x, () and T Az>0, s.t. 1, (D) >x,(8),¥ € ¢ —AOt,8).
x:(¢) strictly reaches h;at ¢: if 3 At>0, s.t. i ()<<h;i,V 7€ (t—At,¢) and x: (1) =

hiyV € (,2) +Ae). _

* M, is strictly starved at ¢; if 3 A2>0, s.t. 2 (D)>x,(),Y 1€ (¢—At,2) and x,(7)
=z,(t),VY 1€ (¢,t+A0).
4.1 A Perturbation on h,

We first compute &Jr(h,a)/h,.

Now assume k, is perturbed to A, +

Ah with Ak being positive and small

x4(¢)

enough. Fig. 3 shows the nominal
paths, (a; (¢) and x,(¢)) and pertur-
bation path x,(z) with such a pertur- Fig. 3 Nominal and perturbed paths -

bation and some machine process ¢’(z) s.t. N<(co. In denoted by dotted curve if it deviates
from z;(¢t). We are interested in those time intervals in which the nominal and the perturbed
paths do not overlap. Apparently, a perturbation on k, does not affect x,(¢). Denote those
time intervals in which z,(#)#x, () by ¢ ,i.= 1,2,+:-. It is easy to observe that ¢ starts when
x,(¢) strictly reaches A, and terminates when M, is starved. Denote I,={t|t€ @,i=1,2, ;-°} 5
I ={t|t€ @ and x,(t)=0}, I; =I—IF; n,=the number of intervals in I,,n; =the number
of intervals in I7 ,»n° =the times that M, becomes starved from idle state (M, is up but not

operation) in I,,n3° =the times that M, becomes starved from operation state in I,;/(I,) =

J:l{tEIz}dt, where {{+} is an indicator function. We then have

LT(h19hz+Ah 9ao(t))
=LT(h1,hz,a°(t))+%[—l(lg)c1+l(12r)c?—l([{)c{]Ah+0(Ah,a°(t)). Y]
where
0(AR a°(t))=éh—z|:(c —c) @+n—£s+£zo—s +(e1+c) £+’£ ] (5)
’ T L™ P\ 2v" 2d 72U ) " 3 iemanay 1.2d ] !
with n; =n; or n; —1 depending upon the value of &,(T). Denote
aL ohy,a® .
rhbe ) _ L L s et et ~1UD e ] 6
2
Apparently, (6) is indepéndent of Ah. Now (4) can be written as
0
Lr(hyshy+Ah,a®(¢))—Lr(hy ,hz,¢71°(t))=aLT(hl ,3’;12’“ (t))NH'O(Ah,a‘)(t)) ¢))
2
Lemma 2 The system (1)~ (3) with the perturbation of &,, we have
Lo Chy h- B a(0)) = L Ghy sy pa (@) = 2218008 O) gy 0 pna2)), a5 (®)
2

where

"LT(’“;Z:’“(‘))=%[—z(12>c1+1(12+)c2+—1(1;)c;], e 9
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limE 19 . (10)

Proof For any machine process a(¢) s.t. N<<oo, we can write the formulas such as

Ahya@) | _
Ah

(8) and (9). Now we should prove (10). Only consider samples of a(¢) s.t. N<<oco,

Now that Ak is given, we cannot guarantee that perturbed path is similar to nominal
path. That means Eq. (7) may not hold for some samples. However, we will prove that the
probability of these samples trends to zero if Ah—>0. Let's study the nature of these samples,
if M, becomes starved some time in perturbed path but it isn’t in nominal path or M, becomes
down while it is being perturbed but hasn't got the whole perturbation gain Ak, these two
cases both will result in failure of Egs. (5). Anyway, these samples can be included in the
following set ,

O, ={wla@) s.t. ti—t1€ fi(x®,z'y o2 ), fi(2®s 2ty eee, 2 P)+RAR) },
where R is a constant and f;is a linear function which depends on the history of (x(¢),a(z).
If w&2,, then 0(Ah,a(t)) in (8) is something such as Eq. (5), using 7,<<N and n; <N, we
have: |0(Ah,a(£)) |<<C+Ah*+ N, where C is a constant which is independent on a(z). By
LLemma 1, that yields

IO
BE})E-*M 5—0' an

1

If w€ 0, then [0(Ah,a(2)) |<KCAR2N+CAh,where C is also a constant. That following

EM"N‘:L”" —C+Ah-EN+CT-P@)). 12)
nl
Recall the assumption that & and #; both are exponentially distributed random variables, and
distribution functions are consistent right continuous, thus, LilmP(.Ql) =0. We then get

—0

| Ahya() |
limE—=—77

From (11) and (13), Lemma 2 holds.
The proof of the theorem 1 Take the expectation of both sides of Egs. (8), then let Ak
—0, from Eqgs. (9) and (10), we obtain

plethia) _ 3
ah, o,

4.2 A Perturbation h,
Now we turn to dLr (h, a)/oh,.
Similar to the case of k,, the perturbed

=0. (13)

g

ALy (h,a)

= <+ ey <oo, a4
2

EL:(h,e) and E'

hy

hy
paths x,(¢) and x,(¢) can be construct-

ed from the nominal paths x,(¢) and z, %2 (t)
(¢), as shown in Fig. 4.

Denote I, = {t |z, (¢) #z, (¢)). Tt Fig. 4 Sample paths when k; is perturbed
can be easily seen that I, is the time interval from the instance when z, (¢) first strictly reach-
es hyto T. Also denote those intervals in which z,(2) %, (¢) by ¢,i=1,2,+. An interval @
for some ¢ starts when z;(¢) is strictly starved and ends when x,(¢) reaches hyand t€I,. De-

fine I,={¢|t € q,i=1,2,+},I} ,I; ,L(I,),I(I1)),l(I) and {7 ) are similarly defined as in
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the precious section., We have

Lemma 3 The system (1)~ (3) with &, perturbed, we have

LT(h1+Ahyhzya(t))_LT(h19h29a(t)):alfr(hlézlz’a(t))Ah+O(Ah,a(t))y a. S. (15)
where
Lrlhoshe,a®) _ L1y (1 3e,—1U e HADG 1G], acs. (16)
1
.o |ARya())]
kelub e+ TEa =0, amn

The proof is similar to that of Lemma 2 and is omitted.

By Lemma 3, the assertion of Theorem 1 for A, holds. Thus, we have completed the
proof of Theorem 1.
5 Numerical Examples

We now use Monte Carlo technique to generate a sequence of machine processes @' (¢),

@ (t),++,a (¢). The strong law of large number and our theorem yield
&
po L SVla G ol Chy@) 3

lim 2= £ T E o o s
'
7 o) ) ! p '

Thus, %’=_}e_ ;%—2 is an unbiased estimate of % Denote %:2( %,%{; » where

& &

h,a o .

at E‘ﬂ—”f——),;el,z and Jf—l—zLT(h,a'). We now present two examples.
a"l,.- k i=] ahj k i=1

Example 1 Let U=2, d=1g C|=1| c§'=2. L';=10| p]=P3=0. ]_' r1=rg=0. Dy T"'.=
360 and k=100. &~1/pe " 9,~1/re ",i=1,2. We obtain the following simulation re-

sults,

hy hy aJ / ahy al /ah, J

4 3.6 —0. 091701 0. 024428 18. 222662 .
4.3 3.6 0. 025260 0. 023551 18. 213660
4.2 3.5 —0. 011006 —0. 002164 18. 211904

Example 2 Let r,=r;=0. 2, the other parameters remain the same as in Ex. 1. Then

the simulation results are

h; hg E)J/a‘l] &f/ahz J

25 21 —0.114213 0. 091016 77. 607500
26 20 —0.052303 0. 080445 77.392441
26 19 —0. 050178 —0. 003604 77. 365894

The above examples show that the gradient estimates indeed lead to the minimization of
the cost functional.

Remark It is not difficult to extend the results presented in this paper to N-machine
serial production line. The only difference is on the rules of perturbation generation, propa-

gation and change. In addition, the assumption of exponential distributions of machine fail-
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ure and repair isn’t necessary.
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