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Abstract: A sliding mode control approach for discrete-time systems with bounded parameter
and disturbance uncertainty is developed by virtue of Lyapunov stability theory, and is applied to
the high precision servo-control of a flight simulaor. Good simulation and experimental results are
got.
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1 Introduction

The continuous time sliding mode control system (SMCS) is robust to parameter uncer-
tainty and external disturbances. However, the robustness usually cannot be guaranteed
when the sliding mode control scheme is implemented on a digital computer because the
changing frequency is limited by the finite sampling rate™. So it is neccessary to design a
discrete time controller based on sliding mode for a digitally controlled system.

This paper is concerned with the sliding mode control for the computer control of a con-
tinuous time system with bounded parameter and disturbance uncertainty. A novel sliding
mode control approach for discrete time systems is developed by virtue of Lyapunov stability
theory. Here, concepts of the sliding boundary layer, control bandwidth**! and perturba-
tions compensation*) are employed in the developed control approach for reducing the upper
bound of perturbation, the elimilation of chattering, the fast reaching of the system quasis-
liding motion. The validity of the proposed approach is verified through digital simulations
and experiments of a servo-control system.

2 The Sliding Mode Control for Discrete Time Systems

Consider the following discrete time state equation related to the SISO system " =

FX,)+6(X,)ut)+d @), considered in

Xk+1)=AX ) +Bult)+W(X,u,d)s 2.0
where X={(z,z,**,2"" )7 is the state and u is the control input, W(X,u,d) is the lumped
system parameter and disturbance uncertainty.

A sliding surface in discrete state space is defined as

Sk)=C(X(k)—Xs(k))=0, 2.2)
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where X (B)={(xa(B) y2a(k) s+ ,xy DT, x4(k) is the desired trajectory to be tracked, and C
= (¢, €25 * 5¢q) 15 the n-dimensional row vector.

Similar to [2], if the desired control bandwidth of systemeis A, then a matching relation
must be satisfied as

¢=CIZIA, i=1,2,n. 2.3
Consider the following control law
w(l)=u, (k) +u, (&
=—(CB) " M{CAX (AR —X(t—1))— (CBYu(k—1)+C(Xs(k) — X (k+1))}

—p(k) sgn (S(k)), (2.4)
where
u.(k)=—(CB) " {{CAX (&) —X(k—1))— (CBYu(k—1)+C(Xs(t)—Xs(k+1))},
2.5
and u. (k) =—p(k) sgn (S(k)), (2.6)

represent the equivalent control component and nonlinear control component respectively.
Using (2.1) and (2. 2), together with (2.4), S(k+1) satisfies
SGAD=SE)F+CW &) —W (k—1))—pk) sgn (S(&))

=S(k)+ER)—p(k) sgn (S(k)), 2.7
where W (%) is short for W(X (&) ,u(®),d(k)), and E(R)=C(W k) —W (k—1)). (2. 7)
shows that the equivalent control component can guarantee the realization of the quasisliding
motion when the system perturbation is constant or no system perturbation exists. At the
same time, slowly varying parameter and disturbance uncertainty can be compensated auto-
matically under the control of (2. 4), which reduces the upper bound of the perturbation and
improves the tracking precision of controlled systems. And the nonlinear control component
u, (k) is used to compensate for the fast varying parameter and disturbance uncertainty.

In the sliding mode control for discrete time systems, the sliding mode motion occurs on
the open neighbourhood of the switching surface instead of on the switching surface because
of the finite switching rate®**), So in this paper, a sliding boundary layer is defined as fol-
lows D)= {X (&) :|SU) |SPER)) sk=0,1,%}, (2.8
where ¢(E(%)), which will be defined afterwards, is a function of the system parameter and
disturbance uncertainty E(%). If the system perturbation is constant or the function of sys-
tem state, the sliding boundary layer will becomes the sliding sector in [3].

The purpose of control is to drive the system switching function to the sliding boundary
layer. Once the switching function enters the sliding boundary layer, the quasisliding mode
motion occurs. In order to guarantee a good design performence of the system, the following
problems should the solved:

i) how to guarantee a good performence of the system when the switching function is in
the reaching phase?

ii) how to keep the switching function inside the sliding boundary layer once the switch-
ing function enters it?

iii) how to define the sliding boundary layer?



468 CONTROL THEORY AND APPLICATIONS Vol. 14

Above-mentioned problems will be solved by the following three theorems.
Theorem 2.1 For syetem (2.1), the following control law
u(k)=—(CB) " {CAX(R)~—X*k—1))—(CB)ulk—1)
F+C(X,(B)—X,(k+1))}—pk) sgn (SB)), XBOED k), (2.9)
can ensure that the system switching function converges to the sliding boundary layer expo-
nentially fast. Where @° (%) is the complement of the sliding boundary layer, and the control
gain p(k) can be determined as
(A=) [S®) | +DBD<pW)<(Q+e™) [SKk) | —D() (2.10)
with >0 the convergence coefficient, and D(k)= |E(%) |.
Proof 1Let the Lyapunov function is defined by

V(k)=%32(k) ,

and the system switching function satisfies
IS4 |<e ™™ |S&) . (2.1D)
Thus, the forward difference AV (%) of the Lyapunov function is obtained as
AVR)=V(+1D—VER)<(eT"—1)S(k)<0.
which shows the system has stable sliding motion. Substituting (2. 7) into (2. 11) gives (2.
10) as required.

Remark 2.1 From (2.10), the solution of p(k) exists if

|S (k) | =e*D (k). (2.12)
Then, the region of attraction @ (k) satisfies
(k) =e'D(k). (2.13)

Theorem 2.2 For system(2. 1), the following control law
u(k) =— (CB)™HCAX ) — X(k — 1) — (CB)uk — 1)

+ C(Xyk) — Xk + 100} — p(R)SCR) /), X(k) € P(k), (2.14)
can keep the switching function inside the sliding boundary layer indefinitely for all remain-
ing ks once the switching function enters it, and the unmodelled system dynamics is not ex-
cited. The control gain can be determined by

DR)<pR)<re(k), (2.15)
where ri=cos(AT)+ «/(2—c0s(AT))2—1—1_, (2.16)

with T" the sampling interval.

Proof Following the work given in [4].
Theorem 2.3 The sliding boundary layer dynamics can be determined by
Ap(k+1)=p, (k) —r,p(k) , 2.17)
where pa(B)=e"|E(k) |x<k)=xd<1<).xoa—1>=xd(k_1) ) (2.18)
Proof If the sliding boundary layer can vary with the system parameter and disturbance
uncertainty, the switching function must satisfy
=+ DS G+ 1H<e(k41). (2.19)
Suppose the system state is in the neibourhood of the desired trajectory, then the switching

function dynamics of the system can be rewritten as
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S(k+1)=S(k)+E,(k)—pas(k) sgn (S(&)), (2.20)
where E,()=CW R —W (k—1)) | X(k)=X‘d(k).X(Ia—-l)=Xd(k—1) :

For convenience, let S(k)=g(k), the same result can be got by letting S(£)=—g¢(k). Sub-
stituting S (k) =@(%) into (2. 20) and satisfying (2. 19) yield
— o+ 1D<S(k+1)=k)+E; (k) —pas(k) sgn (SE)<pk+1),

which reusults in

E, (k) — btk + 1D <ps () <DpCk+1) +290(k) +E4 (&), (2. 21)
where Ap(k+1)=@(k+1)—¢@(k). Let D,(k)=|E,(%)|, then (2.21) is satisfied if
|04 (B) — Q&) | ew = Dp(R+1) (k) — D, (k). (2. 22)
If Ap(k+1)=0, i.e. the sliding boundary layer is invariant, then (2. 22) gives
| 0a (B — @) | g = (k) — D (k) , (2.23)

where p,(k) represents the control gain corresponding to the case Ap(k+1)=0. Substituting
(2. 23) into (2. 22) yields

|04 (B) —@(8) |y =Dk + 1)+ | s (k) — @k | s - (2. 24)

(2.15) shows Pa(k) — (k) <03 pa (k) —p(k)<<O (2. 25)
with (2. 25), (2.24) gives

(B (B)) min=CPa (k) Yrin— A@(k+1). (2. 26)

(2. 26) shows that p,(k) must be revised according to (2. 26) for the satisfaction of (2.19)
as the variation of the sliding boundary layer is considered. Substituting (2. 26) into the
right side of (2.15) gives
APk +1) = (0,(&) ) in—r1¢(R). (2.27)
Considering (2. 23) and (2.13), we got '
(pa(B))ma=e"Dy(k).  (2.28)
Remark 2. 2 The system control band-
width A and sampling interval T are important
design parameters, their selections can refer to
reference [ 2,4] for details.
3 Application Example
The above developed control strategy will
be tested on the real time control of a flight sim-
ulator, which has a high requirement for the

tracking property of its servo-system, i.e. high

precision, fast tracking response and high relia-

bility. Fig. 1 is the photograph of the servo

Fig. 1 Servo-control system for flight simulator

flight simulator. Its hardware detail is shown in
Fig. 2, which is mainly composed of DC motor, PWM power amplifier, DSP —C25 digital
signal processor and induction synchre-encoder. Fig. 3 shows the equivalent block diagram of
the system.

Mathematical Model of the Servo-Control System
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Fig. 2 Hardware details of servo system

From Fig. 3, the state space

representation of the system can be

writ'fen as follows ,
BT S ) R
Ly 0 —1/TM}[1'2] 3
0 0
om0
K/ T L, M
@G.D

where, Mechanical time constant;
T'y=26s;Motor transfer coefficient with null speed: Ky=13. 351deg+s™'/V ;Coefficient: K,

=487, 05deg+s~" /kg »m ; Friction moment: M= M, (1+3e *2)kg m;among them, My=0.
5,6=500, || <43V,
The discretization form of the state equation (3.1) can be written as

[zl(k-i_l) 1 TyQ—e 7Tm)7 ra, (k) (T—Ty(Q—e ™)Ky
3 H }L[ :|u(k)+W(k).

Fig. 3 Block diagram of the system

:cz(k‘l‘l) 0 e-—T/TM xz(k) KM(l_e—T/TM)
(3.2)
T—Ty(1—e ")
wheng W(k)%TMM(tk)Ku[ i Is } (3.3
—e M
The Upper Bound Estimation of the Perturbation E (k)
The perturbation E (k) can be estimated as follows:
DU=|E®) |=|C(W &) —W Gk—1)|
. T—T (1_ —=T/Ty
A } [A 1]TMK,|: - i )}(Mak)—M(tH))
1—e ™"/
=TukK, {,{(T_TM)_|_1+(ATM_l)e—-T/TM} l h {MH(1+0- 3e_"|x2')—MH(H-O. 3e—b112|)} l
(3.4

SO MubTT 3K, | AT~ Ta) +1+ ATy~ 1e” ™ |max [e ™2 ® 2, (D) |1 (60 E<t).
Simulation and Experiment Results of the Servo-Control System
The system is controlled to track two desired trajectories——sine curve with high angu-
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lar frequency and slope input signal with extremely low speed, for evaluating the fast track-

ing response, extremely-low-speed tracking feature and high tracking precision of the de-

signed system. The desired trajectories are

a) Sine input signal xz,(¢)=sin(16nt)(deg), tE€[0,0.5]s. (3.5)
b) Slope input signal z,(¢)=0.001¢(deg), :&[0,1]s. (3.6)
%, /deg %1 x 107° /deg
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Fig. 4(a) Tracking sine signal through simulation Fig. 4(b)  Tracking slope signal through simulation
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Fig. 5(a) Tracking sine signal through experiment
Fig. 4(a) (b) show the simulation re-

» : S . I
sults tracking two desired trajectories. Fig. ® %
. . T ~ T
5(a) (b) are the corresponding experimental ~ 'O[ |
s TA " ot . . S S Desired curve
ones. The initial conditions for simulations 3 x =,
g 208 £
and experiments are (x;,x,) = (0,0) but § £
Flg- 5(a) Wlth (.rl,.rz)=(0. 001,0)9 the ot6 b
sampling interval of controller is 0. 01 sec- \
Tracking curve
ond and A=20. It can be seen that the ex- 0.4 F
perimental results are very similar to the
simulation outcomes if considering the posi- 0.2
tion sensor resolution as well as unmeasur-
£ A i i L A L A A A
able noises existing in the actual system. 0 0.2 04 0.6 0.8 1.0 /s

The validity of the proposed control strategy Fig. 5(b) Tracking slope signal through experiment

is verified by digital simulations and experi-

ments.



472 CONTROL THEORY AND APPLICATIONS Vol. 14

4 Conclusion
The sliding mode control scheme for discrete time systems is presented. Its validity and

good control performence are confirmed through digital simulations and experiments.
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