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Synthesis of Optimal Feedback Controls for
Piecewise Linear System
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Abstruct: Based on algorithms elaborated in Minsk for optimal control problems[', this paper
develops a new method for solving feedback optimal control problems. By introducing a dynamical
statement for optimal synthesis problem, we construct an algorithm for solving optimal control
problem in the real time regime. Terminal optimal control problem for a system with piecewise lin-
ear inputs under constratints on controls and terminal states is inverstigated.
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1 Introduction

The feedback optimal control problem® remains a central one in the control theory. For
the present it can only be effectively solved for optimal problems which deal with minimiza-
tion of convex square functional on trajectries of linear systemst**l, Owing to special struc-
ture of this problem, the optimal feedback is linear that allews to calculate and keep effec-
tively corresponding strengthening coefficients. The dissatisfaction of the slate of the feed-
back control problem in the theory of optimal synthesis is seen from the fact that untill now
the synthesis problem has not been sloved yet even for linear optimal control problems. A
critical analysis of the classical statement of the feedback problem is given in [6] and a new
(dynamical) statement and the solution of the synthesis problem based on it are suggested.
Optimal controllers functioning in real time model for linear systems are discribed. These
controllers for every concrete control process in the real time regime can work out controls
circulating in the system closed by optimal feedback. In this paper the mentioned method is
developed for piecewise linear control problem.
2 Synthesis of Optimal Systems with Piecewise Inputs
2.1 Statement of the Problem

Consider the following terminal problem of optimal controlt? for the system with piece-

wise input.

J@) = c'xz(t") - max, oy
z=Ax + b)), x(0) = z,, (2)
Hx(t") =g, (3
lu@)| <1, t€T=1[0.2"] )

zER" u€R,AER"™, HER™", g€ R", rank H=m <n)
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where
sl {blu + v, U= uy,
b + vy u K gy
b1+b25U15v,5 are n-vectors, |wuo|<<1,buo+tvi=5bu,+v,.

As usual the piecewise function «#(¢),tE€ T, is said to be the admissible control of the
problem (1)~ (4), if it satisfies the inequality constraint (4) and gives the trajectory z(z), ¢
€T, which at the terminal time ¢* gets into the terminal set X* ={x€R":Hx=g}. The
admissible control of the problem (1)~ (4) will be called optimal if along it the criterion (1)
attains maximum value.

Embed the problem (1)~ (4) in to the family of the problems

cz(") - max, (5
z=Ax+bw), z(@) =z, (6
Hx(t") = g, ¢P)
lu@®| <1, t€T.=[r,t"], (8)

which depend on a number r and an n-vector =z.

A pair 5= {r,2} is said to be an admissible position if for which there exists the soultion
of the problem (5)~(8). ,

Let S be the set of admissible positions, «°(¢|s),x°(¢|s) ,t € T, be the optimal control
and the trajectory of the probles (5)~(8) for the admissible position s€ S.

Definition 1 The piecewise continuous function #°(s), s€ S, is said to be an optimal
feedback control of the problem (1)~ (4), if it satisfies the inequality constraint (4) and
gives the trajectry x(z|s),t ETr, of 2=Azx+bw° ¢t 2)) s2(t) ==z, which for all positions s
€ S coincides with X°(¢|s),tETr.

Suppose that in real conditions the system (2) experiences the action of an unknown
piecewise continuous perturbance w(t), t€ [0,¢°]; w() =0,¢€ (t°,¢" ],£°<t*. Due to the
action of perturbances, the trajectory of closed-loop system is discribed not by (2), but by
the equation

z = Az + b@°(t,2)) +w®), z(0) = z,. 9

Assume that in the concrete control process the perturbance w* (¢), t €T, is relized.
Let " (¢),t €T, be the corresponding trajectory of the equation (9). Our goal is to contruct
controller which for every concrete process in real time regime produces the control «* ()=
u’(t,x" (t)),t €T, using exact information about the current state of the system in the in-
verstigated process.

2.2 Optimality Criterion for Program Controls;

Applying the similar methods in [2], we can prove that the optimal control of the prob-
lem (5)~(8) belongs to the class of piecewise constant functions which take only three val-
ues 1, uo, —1 if the following condition is satisfied
H H H

b

! ¢’ ¢

rank =m—+1, i=1,2.

Ab,’,"'( )An_lb,'

Let U be the set of all piecewise constant functions which take only three values 1, u,,
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—1.
Suppose that # ()= («(t) ,t ETt) €U is an admissible control of the problem (5)~(8).
t. () ={t;(),jEJ},|J|=p is the set of switching points of the control u(z),tE€T. Break
t. (t) in to the subsets:
(@) =t € Tr;u(t—0) =1,u@+0) =—1} = {;(D),j € J*},
(@) = {t € Tr,ut — 0) =— 1L,u(t +0) =1} = {£;(v),j € J T},
(1) = {t € Trsu@ — 0) = 1,u(t + 0) = u,} = {£;(x),j € J™°},
“t°+(r) = {t € Triu@® — 0) = up,ut + 0) =1} = {t;(),j € J°*},
27 (r) = {t € Triu(t — 0) = up,u(t + 0) =— 1} = {£;(x),j € J°°},
) =t € Trou@ — 0) =— 1,ut + 0) = uy} = {t,:(‘r),j € J ).
Let 2,,="{t1+¢3+*** sta} be a set of m switching moments of the admissible control «(2),¢
ETr. tf =t Nt™ st =ttt =t N ot =t Nt tl =1, N7 st =t ",
H, ) = HF@" ,0)b,,H,(t) = HF (" ,t)b,,
H,) = HFG¢" ,0)[6,(1 — uy) +6,(1 +up)], t € Tr.

F(t,7),7€[0,t] is fundamental matrix of the solution for the homogeneous part z=Ax

1o

of the dynamical system (6).
Definition 2 A set £,= {t;¢2,'** »¢,} is said to be a #(+) support of the problem (5)~
(8), it the matrix
p=[H @) 2 €5 Uts |H, (@), €15,°Uts | Hy(8) 5t €t~ Ut ™ Jis nonsingular.
The pair (w(+),t,,) from the admissible control and the #(+)-support is called the sup-
port control.
Let
Ci@t) = F@" ,0)5,,C,(¢) = FQ@" ,t)by,
C;@) =c'F@*,0)[b:(1 — wy) + b,(1 + uy) 15t € T
Co =[Ci(®), t € 152U tiH1C, @)yt € £5°°U 55 |Cs@®) 2™ U 25+ .
Calculae the potential vector
y() =C,/ P!
and construct the functions
@ = —yHFG",D, ; A@ =¢ @b, 4,0 =¢ @b,
4,@) =¢ O[6,;Q — u) +6,Q +ud], t€Tr.
The function ¢(¢),t €Tz, is the solution of the conjugate system
g=—A'¢, ¢@*')=c— H'y. Qan
Theorem 1 (Optimality criterion). For optimality of the support control (u(*),z,) it
is nessary and sufficient that the relations
A =0, A@) =0, fu@) =1,
A,@) <0, AWM <0, fu@=—1, (12)
AW K0, AHW=0, fu@) =4, t€Tr,
are satisfied.

The proof the theorem 1 is not given due to the capacity limit of the paper.
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2.3 Defining equations of the optimal controller

From now on suppose that the functions 4,(¢t), A,(t), As;(), tETr do not turn in to ze-
ro at the same moment.

By (12) in terms of the functions 4,(), A,(¢), A;(¢), t &€ Tt the sets (10) can be deter-

mined as follows:
() = {t € Tr;8,(8) = 0,4,(t) < 0,4,(2) > 0,4,(¢) < 0},

£ = {t € Tr:8,(t) = 0,4,(t) > 0,4,(t) > 0,4,(t) <0},
t7(r) = {t € Tr:A,(t) = 0,4,(2) < 0,4,(¢) >0},
7 (t) = {t € Tr:0,G¢) = 0,4,() > 0,4,(2) > 0},
£ (1) = {t € Tr.4,@) = 0,4,() < 0,4,¢) <0},

£70(r) = {t € Tr:4,() = 0,4,(8) > 0,4,() < 0}.
Obviously the optimal control «°(¢|s),tE€ Tt of the problem (5)~(8) is completely de-

termined by

t, (7),y(1), (13)

which consists of p switching points and the m-potential vector which satisfy the equations:
[T, (), i =1,p; y(r),2) =0, (14)

q;#(D), i =1,p; y(©)) =0, j=1,p. (15)

where

f(,8:(2) i = 1,p35(0),2)
= 3 ["HFG 6 A eod+ D [THFE 0 b+ ode

ekt ek b
&
- > I THF @ ,8) (o + v)dt + HF ¢ ,0)z — g,
ek o

A@(T)), jEeJT U T,
g;t:(0),i = T,p;5 y(0)) =4, j € J UJ,
A, jeJT-UJT,
K(t) = {0,1,+,p),
K* (7)) = {i € K(©):u°(@) = 1,t € (t:(0)4t:4:(7)) },
K (@)= {i € K(@):u°@) =— 1,t € (t:(1)t;3,(1))},
K°(r) = {i € K(1):u°(t) = uy,t € (;(7),2,4:(T))},
to(0) =7, t,(z) =1¢".
Introduce numbers 4,,; EK(t) :ki=1if iEK (t); bi=—1, if iEK (r); bi=u,if i E
K°(7).
The Jacobi matrix for the system (14),(15) gets the form:
G G, G} 0
C G 0} Gy
0151001 Gy | = Gy!

G, (1),i =1,p; y()) =
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where
G, = [k HF (¢ ,t)) (5,1 — uo) + 6,1 +ue)),j € JH= U JF],
G, = [(k;_y — k)HF (t" ,t)by, € J°* U J*°],
Gy = [(k;—y — B)HF " ,t)b,,j € J7° U I ],
G, = [HF@" ,tp) B, — ue) + b, (1 + ), j € J°U J ],
Gs = [HF(t* ,tb,j € J*r U I ],
Gs = [HF " ,t)byyj € J° U J°7],
G, = diag (VH —IFQ@",t)AGA — uo) + b,(1 + )

jesrTus°
Gs = diag (y’H — C, )F‘(t'| ,tj)Abl,
' j€J0+ UJ+0
Gy, = diag (VH — )FQ@" ,t)Ab;.
jer’~ys°
Definition 3 The problem (5)~(8) is called regular if its Jacobi matrix G(z;(z),i=1,
py(r)) is nonsingular.

It can be proved that the problem (5)~(8) is regular if

1) BED |~ g, je+us*,
t=:j(r)
Ball)) i o, jede- Ui,
’ fk t=tj(r)
M-;(fli) #O ]GJ+_UJ—+°
‘:k L=lj(r) i ’

2) rank (G,|G;|Gs) =m.

Regularity of the problem (5)~ (8) means that for any t&€T " () (T " (r) is some right-
side neighbourhood of the proint ) the system (14),(15) has only one solution (13) which
determines the optimal control #°(¢) =u°(t|s) ,t € Tr, and it will be used to construct the op-
timal controller. Therefore the equations (14),(15) are called the defining equations of the
optimal controller. The family S(z)={K*(z),K (r),K°(z),p(z)} is called the structure of
the optimal controller.

2.4 Numerical Method for Solving the Defining Equations
Now let us describe an algorithm for sloving the functional equations (14),(15).
Assume that for r=z, €T
T <t,(7), (16)
t, () <t". -7

Suppose that we have the start values £,(zr,),i=1,p;y(t.),z" (t.) such that satisfy
the following equations;

f@o, 6, i=1,p; y(.),z" () =0,
;)i =T1,p; ) =0, j=1,p.

As for numerical solution of ordinary diffierential equations, approximate solution of the
equations (14),(15) will be structructed at the net:

TH(r,) = [tusTu + hyreeyt® —hyt*], h=1t"/N, N <oo.
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Assume that the sequence ¢;(z;+sh) ,s=0,%—1 has been constructed which corresponds
to {r. +sh, x* (t.4sh)},s=0,k—1.
For calculating the moments ¢,(r, +%h),i=1,p, and the potential vector y(r. +%h) we
construct the vectors:
Z' = ()i = 1,p3 ¥l = A

ZV= (@} =t;(t. + (k — DAY ,i = 1,p35" = y(z. + ¢k — D), (18)

Z' = 21 — GUZ D[ (e, + kR, =T, 5,5 (e, + kR)),

@ i =T,ps ¥™1),j=1,p1,1 =21 a9
Let t:(r. +ER)=t°,i=1,p; y(r.+Ekh)=1".

Assume that for some r=rt the condition (16) is violated. For constructing the collec-
tion
t(t+h)i=1, py y(r + h), (20)
corresponding to the position {t+#A,x" (t-+h)}, the vector-Z' is given not by (18), but as
follows ;
Z' =@l =T+ h, t =), i =2,p; ¥ = y(r = y(@)).

Subsequent operations conincide with the written above.

Now suppose for some r=r the condition (17) is violated. For constructing (20) vector
Z' is calculated not by (18) but as follows

Z'= (@ =t i=1,p— 15 8y = t,(®) =k ¥ = y(*)).

Subsequent operations conincide with the written above.

2.5 Algorithm for Acting of the Optimal Controller

Set up the parameter v™>0 which determines the maximum switching frenquency of con-
trols produced by the controller.

The controller begins to function from the moment t=0 with ¢, (0),y(0), where ¢, (0)
= {£;(0),i=1,p} is the set of switching points of the optimal control «°(¢|0,x,),tET, for
the problem (5)~(8). y(0) is the optimal optential vector of this problem for the «(+)-sup-
port z,,. This information can be calculaed before starting of the controller.

Suppose that controller had worked in the period [0,7),0<<t<{z°, and produced the con-
trol " (¢),¢€[0,7). Let =" (r) be the state at the moment t given by the system (2) under
action of the control «* (¢),¢€ [0,7) and the perturbance w* (#),t€[0,7).

Denote the last discontinuious point. (the nearst from the left to r) of the control
u" @),t€[0,0)by t_(r). (f r=0,t_(r)=—00),

By the information {z,z",(r)} the processor responsible for the solution of the defining
equations (14) and (15) supplies {t. (z), y(z)} for the controller. By {¢, (t),y(z)} the con-
troller can construct the function «°(¢|t, 2" (), ET.. We believe that at the moment z the
controller gives the control

{u°(r|r,.z“ @, ifr—1t_ () <v,
u'(r) =
w(z—0),ifr—t_ () >w

Acting such a way controller workes out the control «* (¢),t €T, which accepts only
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three values —1 #,,1. What is more, that the distance between its switching points is no less
than v,

One of the important elements at solving the defining equations (14), (15) §2.3 is
analysis of change of the structyre S(z)={K*(7),K~(1),K°(t), p(r)}. Due to capacity
limit this part is not given here.

3 Example

Let us illustrate the acting of controller using the control problem of oscillatory motion.

It is required in the fixed time duration with minimal fuel consumption to quiet the har-
monious oscillator under perturbances.

The mathematical model of this problem is as follows;

r"|u(t) | g\ miiins
0

r+zrz=u+w, 2z(0)=3+v3, z(0) =0,
x(37) = 0, 1'(377) =0, |u(t)' < 1, t€ [093”:I°

Introduce the phase variables x;, =x,x,=x and the addtional variable xa=f l#(s) |ds,
0

the problem becomes into the canonical form (1)~ (4) with the parameters:
n=3,m=2,c= (0,09 == 1)9 b1 = (0)191), bz = (0,19 - l)v UV = Uy, = 0,

uy, = 0, T=[0,t“]=[093”]9 Zo =3 ’\/?;090)9 g=(090)’

/I 1 00
A= —100,H=( )
0 1 0
0 0 0

The optimal program control of the problem
1, ¢t & (n/6,5%/6) U (13n/6, 17%/6),
u’@)=<—1 t€ (7%/6, 11n/6),
0, at the other moments,
The set of its switching points is
t,(0) = {n/6, 5n/6, 7T%/6, 11%/6, 13%/6, 17%/6}.
At the «°(+)-support t,{n/6, 7x/6}, the potential vector is y(0)=(—2,0).
As perturbances let us take two functions:
sin3t, ¢ € [0,x],
0, t € (0,3n],
sin3t, ¢ € [0,2n/3],
0, t € (2n/3,3x].

Remark In fact, the influence of perturbance is considered by system state in the real

I, 'wl(t)={

I, wz(t) =

time regime. In the example, for imitating the measured state of the system forced by the
control and perturbance, we take the two functions as perturbances.
Calculations were carried out with the parameters A==/100, yv=5h. Every Step 3 itera-

tons of the Newton method were used.

Data of the optimal program control #°(¢) ,t & T are inculded in line 0 of the table.
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Data of the controls u* (¢),t €T worked out by optimal controller (5) under the influ-

ence of perturbances w;(¢) ,w: (t) ,t €T are given in the lines 1,1 of the table.

Table 1 Switch points of controls for oscillatory motion system

ty ts i3 ts ts ts

0 0.52(04)" 2.62(+0) 3.67(0—) 5.76(—0) 6. 81(0+) 8.90(+0)
I 0. 66(0+> 2.73(+0) 3.52(0—) 5.69(—0) 6.66(0+) 8.83(+0)
I 0.66(0+) 2.87(+0) 3.48(0—) 6.00(—0) 6.62(0+) 9.15(+0)

% The symbol (04) means that at the moment ¢, the control changes value from u, to +1.
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