%14 %5 4 W EHEie 5N Vol. 14,No. 4
1997 “E 8 A CONTROL THEORY AND APPLICATIONS Aug. ,1997

Exponential Stability and L, Exponential Stability of
Continuous-Time Systems with Time-Varying Parameters "

LI Yong and WU Hongxin
(Beijing Institute of Control Engineering, Chinese Academy of Space Technology * Beijing, 100080, PRC)

Abstract: This paper presents conditions guaranteeing the exponential stability of continuous-
time linear homogeneous systems with slowly time-varying parameters and the L, exponential sta-
bility of continuous-time linear homogeneous systems with randomly time-varying parameters.
The conditions are motivated by those used in the stability analysis of adaptive control systems
with unmodeled dynamics, deterministic or stochastic disturbances as well as time-varying
paramters.
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1 Introduction

During the last decade, stability and robustness issue of adaptive control systems has
been drawing much attention from researchers (for example, see [1D. An adaptive con-
troller often leads to a closed-loop system which has time-varying parameters. It is well
known that an exponentially stable system can tolerate a certain amount of disturbances and
unmodeled dynamics. Therefore, obtaining exponential stability of the corresponding homo-
geneous systems with time-varying parameters is very important in the analysis of the stabili-
ty and robustness of adaptively controlled closed-loop systems.

Consider the time-varying system in R "

@) =A@ zx@), x(0)=x0, 1.1

where A(2) is an n Xn piecewise continuous matrix function of t. The zero solution of (1.1)

is said to be exponentially stable if and only if there exist positive constants M, and 3, such

that | DCGu) || KMee ™, ¥ t=u, (1429
where ®(z,u) is the fundamental matrix of A(t), i.e.
42,00 _ 4(a(e,00, 20,0 =1, Btw) = 0GOS w0 1.9

Consider the time-varying system (1. 1) under the assumption that A(¢) is an nXn ran-
dom and piecewise continuous matrix function of t. The zero solution of (1.1) is said to be
L,(p>1) exponentially stable if and only if there exist positive constants M; and B such that

(E || ®¢u) 1P} < Mie™ ", YiZu a.s

For the case A(z)=A, the eigenvalues of the constant matrix A determine the stability
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behavior of the system (1.1). When the system parameter matrix A(z) varies arbltrarlly,
many examples have been presented to.show that the stability of the frozen time. System (.

e. » the real parts of the eigenvalues of A(z) at every time instant are over bounded by —3,
B>>0) does not imply the stability of the time-varying system. (for example, see[4]) For
the case where A(¢) is differentiable with sup |A(t)|| being bounded and sup |AC) | being

sufficiently small, results in [2] show that the stability of the frozen time system at every
time instant is sufficient for the exponential stability of the time-varying system (1.1). For
the case where A(¢) is continuous, but not necessarily differentiable, the exponential stabili-
ty conditions for the time-varying system (1. 1) are given in [3] for the case where the condi-

tion that S,l;l? A )] is sufficiently small is replaced by the more general condition that
IAG) —AG) KLt —t; | for all ¢, ,t2>0,a>0, with L>>0 being sufficiently small.

In many situations of interest, A(¢) is discontinuous (for example, see[4]). For this
case, Zhang™! shows that (1.1) is exponentially stable provided that there is a real number
sequence {#;} satisfying

t<tyy—>o0, as k—>oco, and s‘g?(tk+1—tk)<00,
such that
SUPllA(tk)" C <<oo, max {ReA(A@)) i = 1,000 n3k = 1,2, <— a
and lim sup lim sup ﬁ:HuA(t) — AG)|dt < v, 1.5)

l->o0

where A;(A) denotes the zth—elgenvalue of the matrix A, ReA;(A) denotes the real part of A
(A) and v>>0 is sufficiently small.

Paralled attention has also been paid to the stability analysis of the systems with ran-
domly time-varying parameters. Most of the existing results focus on the system with time-
varying parameters being stationary processes’®), or jump processes modeled as a finite
Markov chain'™ or processes satisfying ¢-mixing condition ",

This paper aims at presenting some new conditions both for the exponential stability and
the L, exponential stability of the system (1.1) with slowly time-varying parameters. The
conditions are motivated by those used in the stability analysis of adaptive control systems
with unmodeled dynamics, deterministic or stochastic disturbances and time-varying parame-
ters, For the case where the parameters are deterministic, the conditions we present in sec-
tion 2 for exponential stability of the system (1. 1) are more general than those used in recent
papers [3] and [4].

2 Conditions for Exponential Stability

The main purpose of this section is to provide some sufficient conditions, which is more
general than those used in [2~4], for the exponential stability of the system (1. 1).

Theorem 2.1 For the linear time-varying system (1. 1), assume that there are a real
matrix process {A,(#)} and a real number sequence {¢;,k=0,1,+) satisfying

t,=0, lk<tk+1—’00, as k‘*OO; skt>1p(tk+1 —t)=T<oo,
=0

S,}ilo’”AO(tk)” < C < oo, 2.1
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and max{ReA (A,(2:)),i = 1,000,msk = 051,00} L—a 2.2
such that IfIIA(t) —AG) |t <vfty —t)) + K, forall k= j, (2.3

where C>>0,a>>0 and K=>0 are constants, and f(¢) is an increasing function of ¢€[0,0).
Then there exists a real number v, such that the system (1.1) is exponentially stable
provided that v€ [0,v,).
Proof By (2.1), (2.2) and the argument used in [2,3], we may conclude that there
exist constants M=>1 and p>>0 such that
| exp{Act)t — D} || <K Me ™, Yit=s5s=0, 2.9

2(2"—1)
"

for any k. (for example, see [3], we may choose p=— and M=1+ cehH.

Define T=20"'UnM+KM),T,=0 and T,+1=m33<{t.-,t,-e (T,+T,Ts+T+T]}. Then

it is clear that

T< o — T <T+T, (2.5)

| exp{A, (TG — )} || S Me ™™, Yt=s=>0, (2.6)

and [ 1 4@ — 4T 14t <vf Ty = T + K. @
k

For any fixed t=>u =0, it is clear that there exist &, and k,,k=k.; such that t€ [T,,,
Tk‘+1) and u€ I:Tk" 9Tku+l)'

From (1. 3) we have
WO _ 2T )00 + [A@) — AT IR, Pww) =T,  (2.8)

which implies that
D(t,u) = eAO(Tk,)(’_T*.)tp(TkI,u) + J.;"eAO(T*,’“—’) [AG) — AT ) ]PCGs,u)ds. (2.9)
This, together with (2. 6), yields
I @w) | < Me ™™ || &(T,,w) || + Mj;k’e“”“_" I AG) — Ao(Tu) ||+ || @G5 |l ds.

(2.10)
Multiplying both sides of (2.10) by e” and applying the Bellman-Gronwall lemma (see,
[8]1), we obtain

| @¢,w) || <M exp{ pt — Ty) + MJ;A | ACs) — Ao(T) | ds} | &(Ty ) | . (2.1D)
Similarly, for any fixed T ,k,+2<k<Ck,, we can derive that
“ D(Ty,u) “ < MeXP{— o(Ty—T,_)) + MIT ” AGs) — AT - “ ds} ” D(T—ysu) ” ’
k—1)

(2.12)
which together with (2.5),(2.7) leads to

| B(T,ou) | <Mexp{— o(T, —Ts)) + Mvf(T,— T, + K]} | (T su) ||
Lexp{InM + KM — pT+ oMf(T+ T)} || ®(Ts_,u) |



482 CONTROL THEORY AND APPLICATIONS Vol, 14
o —

behavior of the system (1.1). When the system parameter matrix A(z) varies arbltran]y
many examples have been presented to.show that the stability of the frozen time: system '
e. , the real parts of the eigenvalues of A(z) at every time instant are over bounded by —pg,
B>0) does not imply the stability of the time-varying system. (for example, see (4D For
the case where A (¢) is differentiable with sup lA ()|l being bounded and sup IAG)| being

sufficiently small, results in [2] show that the stability of the frozen time system at every
time instant is sufficient for the exponential stability of the time-varying system (1. 1), For
the case where A(z) is continuous, but not necessarily differentiable, the exponential stabil;j.
ty conditions for the time-varying system (1. 1) are given in [3] for the case where the condj-

tion that sup A ()| is sufficiently small is replaced by the more general condition that
=0

A —AG) | <Lt —¢,|" for all ¢, ,tz>O,a>0, with L>>0 being sufficiently small,

In many situations of interest, A(z) is discontinuous (for example, see[4]). For this
case, Zhang™! shows that (1.1) is exponentially stable provided that there is a real number
sequence {#;} satisfying

tpy<tp—>o0, as k—>co, and Skl;p(tk+1—tk)<009
>0

such that
sup]lA(tk)II C <oo, max {ReA(AW@)),i =1, ynsk=1,2,}<— a
', 44
and lim sup 11m sup Jk |AG) — AG)|dt < v, (1.5)
‘n

{00

where A;(A) denotes the ith-eigenvalue of the matrix A, ReA (A) denotes the real part of A
(A) and v>>0 is sufficiently small.

Paralled attention has also been paid to the stability analysis of the systems with ran-
domly time-varying parameters. Most of the existing results focus on the system with time-
varying parameters being stationary processes'®, or jump processes modeled as a finite
Markov chain® or processes satisfying ¢g-mixing condition .

This paper aims at presenting some new conditions both for the exponential stability and
the L, exponential stability of the system (1. 1) with slowly time-varying parameters. The
conditions are motivated by those used in the stability analysis of adaptive control systems
with unmodeled dynamics, deterministic or stochastic disturbances and time-varying parame-
ters, For the case where the parameters are deterministic, the conditions we present in sec-
tion 2 for exponential stability of the system (1. 1) are more general than those used in recent
papers [3] and [4].

2 Conditions for Exponential Stability

The main purpose of this section is to provide some sufficient conditions, which is more
general than those used in [2~4], for the exponential stability of the system (1.1),

Theorem 2.1 For the linear time-varying system (1. 1), assume that there are a real
matrix process {A,(¢)} and a real number sequence {t;,k=0,1,¢+) satisfying

=0, <tpy,—>o0, as k—>o00; SAl;F()) (o1 — 1) =T oo,

supllA )| < C < oo, 2.1
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No. I
"-’.-‘-’_"_'_'__._._ .
4 mHX{ReAi(Ao(tk))!l = 17"'v"§k o 071,"'}<_a 2.2)
an .
1 that )[‘||A(t) — At | dt Softs —t) + K, forall k=, (2.3)
suc Y

1 C>0,a>>0 and K=>0 are constants, and f(¢) is an increasing function of t€ [0,00).
wher ! R

Then there exists a real number v, such that the system (1.1) is exponentially stable
that 'Ue [097}0)-

provided
f By (2.1, (2 2) and the argument used in [2,3], we may conclude that there

Proo
st constants M>=1 and p>0 such that

lexpl{Act) ¢ — D} || S Me==, Yit>5>0, (2.4)

for any k. (for example, see [3], we may choose p=% and M=1+2—(21~:;_,,1—)C(3C)"“).

Define ’f‘:Zp—l(lnM-l-KM),To:O and Tk+l=m>aox{t,',t,'e I:Tk"_T ,Tk+i’+T]}- Then

exi

it is clear that

T< Tk+1 _Tk<T+ T’ (2-5)

” eXD{Ao(Tﬁ)(t = 5)} ” < Me_p(l_’)’ V t > B} 2 0, (2.6)

¥ J: | AG) — Ag(T || dt < vf Ty — Ta) + K. Q2.7
]

For any fixed tZ=>u=>0, it is clear that there exist &, and k.,k =k., such that t€ [Tk.’
Ty and w € [T s T 10

From (1. 3) we have

d®(t,u)
de

which implies that

= AT NDE,u) + [AW® — AT )IPGw), Puw,u) =1,  (2.8)

D(t,u) = eAO(T*,)(‘;T*,)d—"(Tk’,u) + J-T e T A(s) — Ao(Tkl)]d”(s,u)ds. 2.9
kl
This, together with (2. 6), yields
I @,0) | < Me ™" || &CT, ) | + ML e " | AG) — A (T |l = | §Cs,u) || ds.
k[

(2.10)

Multiplying both sides of (2.10) by e” and applying the Bellman-Gronwall lemma (see,
(81, we obtain

| &, | <M exp{— pt — Ty + MJT‘ | AGs) — Ao(Ts) I ds} [ O(T, yu) . (2.1
Similarly, for any fixed T k,+2<k<Ck,, we can derive that
leT,w | < Mexp{— Ty — Tioy) + ML | ACs) — Ao(Tip) |l ds} | @CTossd |

. (2.12)
which together with (2.5),(2.7) leads to

I (T, u) || <M exp{— p(Ts — Teet) + M[vf(Ty — Tiey) + K1} || €(Toey ) |
Lexp{lnM + KM — oT+ vMf(T+ T} || O(T,_,,u) ||
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—exp{vMf(T+T) — %T} | D(Teysu || - (2.13)
o

2Mf (T +T)

| OThyw) | <e? | O(Tiyuw) ||, 8 =—vMF(T+T) + §T> 0.  (2.14)

Therefore, if we take v,= » then for any fixed v€ [0,v,), we have

From (1. 3), it easy to see that
| @Czy,) | < exp[J'l I AGH | ds} y Yn=>1,20 (2.15)
2

This, combined with (2.1) and (2. 7) yields
T

10T 0 | <ewp{ [ 1466 115)

L

b, +1 k,+1
<exp [ 1 4scr s [ 1 A0 — T, ) )

T,

Lexp{vf(T+T) + K+ CT+T)). (2.16)
Combining this with (2.11) and (2. 14) leads to
| @ty ||

<M exp{Mﬂ_ | AG) — Ao(To) | ds — 8k, — kb — 1) + of T+ T) + K + C(T+ T)}

< Mexp{M + D[of(T+T) + K]+ CT+T) — 8k, — k., — D}. 2.17)
From (2. 5) and the definitions of %, and k,, we see that

t—u< Ty —T) < G — kb + DT+ T,

which means that k, — k, = T+T)'¢t —u) — 1.
Substituting this into (2.17), we finally obtain
I®Ct,w) | <M exp{ (M + D[wf(T+T) + K]+ CT+T)

— [T+ T) ¢t —u) — 2]}

" " 8
<M exp{(M + D[wf(T+T) + K]+ C(T+T) + 25}exp{— — T<t —u)),
Then we see that (1. 2) holds for the system (1.1) with
My = Mexp{(M + D[wfT+T) + K]+ CT+T) + 28}, B = %T> 0.

Remark 2.1 It is easy to varify that the conditions given in Theorem 2. 1 for the expo-
nential stability of the system (1. 1) is more general than those used in [2~4].
Remark 2.2 From the proof of Theorem 2.1, we see that the result in Theorem 2.1

holds if we choose v, = —L with M=1+4 wc (3C)* ! and T = 4o}
AMF(T+T) i
(nM+KM).
Example 1 Consider the system (1.1) with
A@) = [_ ! b(t)}, (2.18)
at) —1
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1, lfte [k,k+10"'), k=1929°"9

where a@®) = -
0, otherwise,
d b {10‘12(t—2f~1013), . ifte [2]'.1013'(2]'_*_ 1)10) 4 = 01,0,
n = A
a 10 — 10720 — (25 + D10%], ift € [(25+ 1) + 10",2(5 + 1)10'),j = 0,1,°.

It is easy to see that A(¢), given in (2. 18), is piecewise continuous and does not satisfy
(1.5) with v=1 for any real number sequence {z,}, so the results of [2~4] can not be ap-
plied to judge whether the system is exponentially stable or not. If we choose

-1 &)
0o = 11 k
and t,=k,k=0,1,2,, we derive that the conditions in Theorem 2. 1 hold with C=102,a=

Ao(t) == [

, -
1,K=?1)-,v=10“2 and f(t)=£2-. It is easy to verify that v=10_”<vo=—~L—, w
2M(T+1)?

C(3C)" ' and T=4a"'(In M+KM). Therefore, from Theorem 2.1 and

here

AT AP e B
M=1+ pope

Remark 2. 2, we see that the system in this example is exponentially stable.
3 Conditions for L, exponential Stability

In this section, we will present some new sufficient conditions for the L, exponential
stability of the system (1.1) without assuming that the time-varying parameters are station-
ary processes, or jump processes modeled as a finite Markov chain, or processes satisfying ¢-
mixing condition.

Theorem 3.1 Consider the linear time-varying system (1. 1) under the assumption that
A(2) is an n Xn random real matrix process adapted to a nondecreasing family of g-algebra
& ,. Suppose that there are a random real matrix process {A4,(¢)} adapted to %, and a deter-
ministic real number sequence {¢;,6=0,1,++} satisfying

th =10, £ <tyy; >0, as k—>oo; Skgp(tlc+l_tk)=T<°°!
=0

Skgl.? ” Ao(tk) ” <C< o0, a, s, (3. 1)
and max{ReAi(Ao(tk))9i = 1yeeeynzk = 0,1, } <_ a, a,s., (3.2
such that
t 1/N
{E exp{NJ‘fllA(z) — Ay || de} I?,,) } <exp{vf(t —t) + K}, as., (3.3)

for all £2j, where f(¢) is an increasing function of ¢+ € [0,0) ,C>0,a>0,K=>0 and N>0

are constants, satisfying

2"Jf“(2'l -1

N>M=1+ o

cao) . i G.0

Then there exists a real number v, such that for any v€[0,v,),p€ (1,N/M), the sys-
tem (1.1) is L, exponentially stable. Furthermore, if the condition (3. 3) is replaced by

/] 1/N !
(E(exp V[ 14 — 4 1451172} <explofe — ) + K}y s, k= 0,1,,

(3.5)
for all £Z22,2u, then there exist positive constants M, and f) such that
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(ECI O | #|F S < Me ¢, as., Vit >u - (3.6)
Proof We first show that (1.4) holds for some positive constants M, and fB; under the
assumpdgon (3. 1)~ (3. 4).
Let Ty {Ts,k=0,1,2,} be the same as those in the proof of Theorem 2. 1. For any
fixed T, by the argument used in the proof of Theorem 2.1, we obtain

| &, T | <Mexp{— pt —Ty + ML | ACs) — Ao(Tk) I ds} , a.s., Vt=T,,

(3.7
where M is defined in (3. 4).
For p€ (1,N/M), by (3.7),(3. 3) and the Holder inequality, we have

B O T 7157 <Mre s ™0 - B exp(pM[ " | A= AT 161157,
]

1 PM/N
<MPe—PP(TA+1_Tk) . {E exp{NJ—; " A(s) —AO(TI:) " ds} |"a-”7‘7‘,, }
k
‘<Mﬁe_PP(Th+1_Tk)+pMEvf(Th+l—Tk)+K]
éep[lnM+KM—p:i'+va(7+T)] — ep(u!ﬁf(?ﬂ‘)—{-?), M- ihd (3. 8)
Therefore, if we take vo=—JL , then for any fixed v€ [0,v,), we have
2Mf(T+T)
E(|| ®(Ts1>T: I ’I.Z‘r-r‘) <Le ™, a.s., (3.9

where 6>>0 is defined as in the proof of Theorem 2. 1.
For any fixed £=>u=>0, we see that there exist &, and k.,k =k, , such that t€ [T Tk +1]
and « € [Ty, T +1)-

If k,=k,, then it is easy to see from (2. 5) that 0<t—u<<T+T. By (2.15), (3.3) and

the Holder inequality, we derive that

(E || @Ct,u) || 17 <E exp(p)| """ | AG) || ds}}*

%

<{E exp{p[r:'ﬂ | Ao(T ) | ds + -

T ®

= 1/p
U AG) — AT | ds]} }

= k41 /N

LeCT+D {E exp{NrT' | ACs) — Ao(Tw) i ds}}
ll

<ecﬁ+r)+nﬂ1~"+'r)+x

= = é
geC(T+T)+vf(T+T)+K+5 o exp{— ’T‘+ T(t — u)}. (3.10)

For the case where k=%, 41, from the definition of ®(t,u), we see that
¢(t 9“) = ¢(t 9Tkt)¢(Tk‘9Tk"+1)¢(Tku+1 9u)- (3- 11)

Since {A(t),7 .} is an adapted matrix process, it is easy to see that so is {P(ts20)»F,}
for any 0<t,<(t. Then, by (3.9) and the Holder’s inequality , for p€ (1, N/M) k. >k, +1,
we have
EC) OCT, Ty | #1575, ) SEEC Ty, o #1575, 1 94 T 2157, )
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<e—P5E( ” Q(Tk,—l’Tk"+l ” , I‘gz—T‘ +l)’ a.8..

Repeating this argument k,— (k,+1) times and using the fact that || (T, 41, Ty +1) | =1,
a.s. » we obtain that
EC||®(Ty,To ) |1 #1F7, ) <e™P4 4P, as, for b=k +1. (3.12)

By the argument similar to that used in (3. 10), we derive that

E( ” ¢(t,Tk‘) ” » |g,rn e ep[0<7+'r)+uf(?+'r)+x]’
' (3.13)

E ” ¢(Tku+19u) " P ep[c<?+r>+uf(i+1)+lq'

Then, by (3.12),(3.13), the Holder inequality and the fact that &, —&,>(T+T) (¢ —
u)—1 for p€ (1,N/M), we obtain that
{E | @Cu) | 232 <{EC|| @GT) |2 | OCTh s To 1) |2 | (T y 1150 || 232

SUEEC 9T || 2157, | BTy, Top) I @CTs 10500 | )72

N

eC(?+T)+vf(?+T)+K{E(E( ” ¢(Tk,9Tk“+1) " » '._71-‘ +1) ” ¢(Tku+1 ’u) “ p)}l/p

geC(T+T)+vf(T+T)+K—8[k,—hu—1]{E | @CT e +150) || #) )%
<e20(7+'l‘)+2vf(7+1‘)+2K—3[k‘—ku—1]
7 7 [}
L XTHD+2f TATI+2K+28 | (op | — — ¢ —wl, 3.14
= P T+ T ( )
From (3.10) and (3.14), we see that (1. 4) holds for the system (1.1) with
M, = ezc<7+1)+z"f(7+‘r)+zx+za, B == ) >0,
T+T

-

i.e. ,(1.1) is L, exponentially stable.
Similarly, if the condition (3. 3) is replaced by (3.5), we can obtain (3.6). Q.E.D.
Remark 3.1 From the proof of Theorem 3. 1, we see that the result in Theorem 3.1

, __aT . L 2 -1 o =S
holds if we choose v,=—————— with M—1+—TC(3C) and T=4a '(InM+
AMf(T+T) T
KM). .
Example 2 Consider the system (1. 1) with
—1 6@
AQ@) = |: :|, (3.15
a(t) —1 )

where a(2)=10""w}, for t€ [k,k+1),k=0,1,2,+, with w, being a Gaussian white noise
sequence with variance 1, and
P {10_8(13 —25+10%, if ¢ € [25+10°(2j + 1)10°),j = 0,1,2,+,
10— 10780 — (2j + D10°], if2 € [(25 4+ 1) +10°,2(j + 1)10°),j = 0,1,2,.

—1 b@®
If we choose A, (1) = [ :ls
0 =]
and #,=0,1,2,+*,and use the fact that E exp {ew}}<eM for any k>0,0<e<% , "’2_1—825

(see [9]), then we derive that conditions in Theorem 3. 1 hold for the system with C=102,
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2 —6
a=1,K=0,0=10"%, N=10°,M=24 » 102 and f(t)=%-|—1—_;0.—10_—8t. It is easy to verify
that v=10_8<-v0=——L—— with T'=4lnM. Therefore, applying the result in Theorem

AM(T+1)? .
3.1 and Remark 3.1, we see that the system in this example is L, exponentially stable for p

€ (1,N/M).
4 Conclusion

In this paper, we have presented general conditions for the exponential stability of con-
tinuous-time linear homogeneous systems with slowly time-varying parameter and the L, ex-
ponential stability of continuous-time linear homogeneous systems with randomly time-vary-
ing parameter. The results can be applied to investigate robust stability of adaptive control

systems.
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