HUUBHESH EHAELSNR Vol. 14,No;5
19974 10 B CONTROL THEORY AND APPLICATIONS Oct. ,1997

Robust Stability of the State-Space Models
With Structured Perturbations

ZHANG Ying and SU Weizhou
(School of Electrical and Electronic Engineering Nanyang Technological University » Singapore,639798)

FENG Chunbo
(Research Institute of Automation, Southeast University « Nanjing, 210096,PRC)

Abstract: This paper studies the robust stability of state-space models with structured pertur-
bations. An necessary and sufficient condition for the stability of the perturbed system are ob-
tained by exploiting the critical stability condition in the frequency-domain and the structural infor-
mation of the system. It is shown by examples that an less conservative stability margin of the sys-
tem carf® be achieved by using the new condition.
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1 Introduction
This paper studies robust stability of state-space models with uncertain parameters in

the state matrix. The system under consideration is described by

X = (A + bAX, o))

{
Where X e R",A E R'XIQAA = Za,‘A,’,A,‘(i = 1,29'“,!) G R”X-, and a;(i = 1,2""1[) are

uncertain perturbation parameters.l

The nominal part of the system (1) denoted by

X= AX ¥ (2)

is assumed to be asymptotically stable, i.e. , all the eigenvalues of matrix A lie in t‘l-1e open
left half-plane.

The problem of the stability robustness analysis is to find the largest bound a such that
the system (1) is stable for the perturbation parameters satisfying || a || < a, wherea = (a,,
a,,+=,a,)T. The number a specifies the maximun stability robustness margin of the system.

Recently such problem has drawn much attention and many analysis methods have been
proposed[1~7]. Since only the sufficient conditions on stability were exploited in those
methods, the allowable perturbation bounds on the system parameters a; were reached con-
servatively. Thus the problem of determining the stability margin of system (1) can not be
said to be solved satisfactorily.

In this paper, the problem is treated by utilizing the critical stability conditions in fre-
quency-domain and the structural information of the system. A new sufficient and necessary

condition for the stability of the perturbed system is established . It is shown by examples
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that the stability robustness margin obtained by using this new condition is less conservative
than those of the existing methods.
2 Main Results

Let us firstly consider the case where the system (1) is critically stable. In such a case,
there are a pair of conjugate eigenvalues + jwand a nonzero vector X € R" such that

[
(— jol + A+ D aA)X =0. (3)

Rearranging Eq. (3) gives

' {
X = (ol — A)™' D aAX. 4)

=1

Let span (Re(A,),Re(A4;) - ,Re(A,)) be the space spanned by Re(AD G = 1,2,%048),
where Re(A) be the range space of matrix A. Then Eq. (4) implies that

X € (jowl — A)“span(Re(A,),Re(Az),---,Re(A‘)). (5)

Denote A4 (w) be the space (jwl — A)~'span(Re(4,),Re(4,),+ Re (A)). The follow-
ing theorem shows that the stability robustness of system (1) can be studied on the space
N (w).

Theorem 1 Suppose that the nominal system given by (2) is asymptotically stable.

Then the system (1) is stable if and only if
sup max || (el — A)NAX AKX AX)a |l <1, (6)

€ [0.00) XEA W Izl =1
where the norm is compatible norm on the space A4 (w).

To prove Theorem 1 the following lemma is useful.

Lemma 1 Suppose the system (1) be stable when the perturbation parameter a is such

that ||all € [0,6), wherebisa positive number. If the system X= (A4 AMA) X is critically
stable then {A| = 1.

proof The method of reduction to absurdity is used here to come up with the conclu-
sion.

If |A] <1, then0 << || A« I < lall <&. Under the assumption in Lemma 1, we get
that the system X = (A + AMA)X is stable, which is contradictory to the condition that the
system is critically stable. Thus the conclusion of the lemma is valid. Q.E.D.

proof of Theorem 1 Sufficiency. To show the sufficent condition, a methodology of re-
duction to absurdity is adopted here. It will be shown firstly that if the system (1) is unsta-
ble then the inequality (6) will not hold.

Since the eignvaluees of system (1) depend continuously upon lall s there must be a
positive number A € (0,1) such that the system X= (A + AAA)X is critically stable if the
system (1) is assumed to be unstable. In such case, there is a nonzero vector X € R satisfy-
ing.

(jw[—A—AAA)X=0. 7

It is obvious that

X = A(jwl — A) (A X A X o AX)a € A (@), (8
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Thus,
Izl =121 || Gl — A1 (AX,A4,X,,AX)a] . (9
Since 0 <C A <C 1, it following from (9) that
sup max | Gl — A (A X,A,X,,AX)al| >1 10)

wE[0,00) XE A (W) || z || =1
which results in a contradiction to the condition (6). The sufficient condition is thus proven.

Necessity. We will show that if the system (1) is stable then the inequality (6) holds.

Assume that the maximum stability margin of system is given by a positive real number
b, i.e. , the system (1) is stable with the perturbation parameter a satisfying 0 <C | a || <<é.
For a certain parameter a, there is a real number A such that the system X=(A+ AAA)X is
critically stable. By Lemma 1, A > 1.

Meanwhile, there are a frequency @ € [0,00) and a nonzero vector X such that

Gol — A — AAAYX = 0, an

if the system X= (A4 + AAA)X is critically stable.

Rearranging (11) gives

X = Aol — A)71 (A, X,A,X,, A, X)a. 12
It is obvious that
ﬁ ” x ” ) “ (ij e A)il(AlX’AzX"" yAX)a ” . (13
Therefore
sup max | Gol — A)Y 1A X,A,X,-,AX)a| <1. (14)

w€[0,00) XEA () [ z] =1
Since a is taken in [0,4) arbitrarily, the above inequality is valid for all @ such that 0 <C

[la|l <b. The necessity of the theorem is proven. Q.E.D.
Form Theorem 1 the following corollary can be derived easily by using properties of
norm. It provides us sufficient condition for determining the bound on the perturbations.
Corollary 1 Suppose the nominal system (2) is asympototically stable. Then the sys-
tem (1) is stable if )
sup | GeoI — A)1 || max || (4,X,4,X,,A4X) | lla] <1. (15)

wE [0y00 Xed@ |zl =1
In this corollary the norm of a may be anycomatible norm on 4 (@) such as H,,H, and

H...
3 Application: The Euclidean norm
The results of the last section are now applied to the case where the norm of the pertur-

bation parameter a is taken as the Euclidean norm

IX0,=0[>)1X:12]z, X € R™. (16)
i=1

Suppose that an orthogonal basis of the space span (Re(A;),Re(4,),+,Re(4))) is giv-
en by e;,e;,+-*,¢;, where £ is the dimension of the space A (w) ande; € R, (G = 1,2, R,
Then each of the perturbation matrices A;(; = 1,2,+**,4) can be described by
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gt
LY
A; = (61932""9ek) . y G = 1,2,50), an
L

where I,; € R” and T denotes the transpose operator of a matrix or a vector.
Defining T(X) = (A, XA X,y JAX) Y (AX,AX ,AX), we get

£
k l?;
T(X) = diag(X" oo, XD Unsligs ol | Tdiag (X, > X)> (18)
i=1 :
i .

where * denotes the conjugate transpose openator of a matrix or a vector.
By the definition of the 2-norm, it follows that
| (A X,AX JAX) | = Aeae LT (XD T, as
where A [T (X)] denotes the maximum eigenvalue of the matrix T (XD.
Similarly, we can obtain

| Gol — A7 =  min X" (= jol = ATl — AX. (20)

xe(@ hxl=1
Then thevresults presented in the abc))le“section can now be restated in terms of the Eu-
clidean norm.
Theorm 2 Suppose that the system (2) is stable. Then the system (1) is stable if the
perturbation parameters satisfy
i Cmin X' (— jel — A Gel — X
et gt S e a@ay. R

xe (|l =1

Proof This conclusion can follow directly from corollary 1, (19) and (20). Q.E.D.
The right side of (21) gives a bound of the stability robustness margin. The expressions

of denominator and the nominator of such a bound reveal that the stability robustness margin
should be determined by using both the frequency features of the nominal system and the
structure of perturbation matrices.
4 Examples

Example 1 Consider the system in [1,4] and [5] with structured perturbations given

by
. —3 —.2 a, 0
X= U )+ [ ﬂx (22)
1 0 a, O
0

—3 —2 1 0 0
where A = ),Al == L and A, = .
1 0 0 0 1 0

It is obvious that

span(Re(4,), Re(A4,)) = R?, (23

and

sz 0,
(@) ={ e (24)
R), w=20
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where C? is the complex space of two dimensions.

Taking the following orthogonal basis of the space span (Re(4,),Re(4,))

el = (1,0) and e} = (0,1), (25)
we obtain
= 1,0 I =(0,0 IL=0,0, I5=1,1), (26)
and
T(X) =1. Q@7

On the other hand,
min = X*(— jwl — A (ol — A)X = o + 1. (28)
XeH (@ | z| =1

From Theorem 2, we know that
lall,<1. (29)
Therefore the stability robustness margin is given by @ = 1, which is actually the maxi-
mum stability robustness margin. Comparing with the margins 0. 6575, 0. 6667 and 0. 9150
obtained in [1,4]and [5], we can see that the presented result is better than the existing

ones.

Example 2 Consider the system

— 24k 0 — 1+ 4
X= 0 — 34k 0 X, (30)
—1+k1 —1+kz —4+k1
—2 0 -1 1 0 1 0 0 0
whereA=| 0 —3 0 [,A, =10 0 0|landA4,=]0 1 ol.
-1 —1 —¢ 1 0 1 01 0

This example was used in [1,2],[4] and [5]. The stability margin given by these meth-
ods are 0. 8151,0. 5207, 1. 5533, and 1. 75 respectively. It will be shown that the largest
bound on the perturbation parameters can be calculated by using (21).

Taking the following orthogonal basis of span (Re(A4,),Re(4,))

e = (1,0,1) and e¢f = (0,1,1), 3D
we get that
4 =(1,0,1), L = (0,0,0), I, = (0,0,0), I}, = (0,1,0).
Ao T (X) = 1, (32)
and
inf max X" (— jwl — A (ol — A)X = 1. 75. (33)

@€ [0,00) XEN (@) || x| =1
Therefore, the bound is given by @ = 1. 75, which is just the maximum stability robust-

ness margin of the system.

Both the examples demonstrate that an improveed stability robustness margin can be ob-
tained by using the method presented in this paper. Applying our method to other examples
also yields better bounds than those of other methods.

5 Conclusion

The stability robustness of state-space models with structured perturbations is studied
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in this paper. The results show that the stability margin of the system is related not only to
the perturbation structure but also to the frequency features of the nominal system. An im-
proved or the exact bound on the margin can be obtained by using the structural information

of the system and the perturbation matrices.

References

1 Yedavalli, R. K. and Liang, E.. Reduced conservation in satility robustness bustness bounds by state transformation.
IEEE Trans. Automat. Contr. , 1986,31(7):863—866

2 Zhou, K. and Khargonekar, P.P.. Stability robustness bounds for linear state models with structured uncertainty sys-
tem. IEEE Trans. Automat. Contr., 1987,32(5):621—623

3 Martain, J. M.. State-space measures for stability robustness. IEEE Trans. Automat. Contr. 1987,32(4):509—512

4 Chou, J. H.. Stability robustness of linear state-space models with structured perturbation. System and Control Letters,
1990,14(2):207—211

5 Hu, T and Shi, S.. Robust analysis for system with uncertain parameters in state matrix. Control Theory and Applica-
tions 1992,9(4):533—537(in Chinese)

6 Niu, X., De J. A. Abreu-Garcia and Yaz, E.. Inproved bounds for linear discrete-time systems with structured pertur-
bations. IEEE Trans. Automat. Contr. , 1992,37(9):1170—1173

7 Su W. and Jim, P.. Robustness of linear state-space models with structured perturbation. Journal of Southeast Univer-

sity, 1993,23(1)50—54(in Chinese)
SEMEFNRESESERNERES T

I B OAHM
(ERET A%, m Tl F LR - MK, 639798)
4 448
(FRE A2 B TR - BR,210096)

LEEF Ziiilﬁfs’%?ﬁﬁ%%ﬁtﬂwﬁ?ﬁ%ﬂ‘]%ﬁﬁ.ﬁ%%%ﬁiﬁ%llﬁ‘:ﬁ-%ﬁﬂ&%ﬂl%%ﬂ‘l%%%ﬁ,
%HjT~’|‘¥ﬂﬁz‘n%ﬁ%ﬁ‘lﬁﬁ%\%%ﬁ,%ﬂﬂﬁlﬂs%%%ﬂi T MREARGERBMELAMOTE SHA
97 ¥ A L » A% S0 ¥ AT S R ST /D B B R R E B

DR . BEREN; BRI BRRELR

AXHEH BN
W H 43T 1989 45,1992 F M 1995 5T AR K 2 gE 2 o B A L . BUAERTINIK Nanyang Technological
University W E B LAE.
HHM AHTF 1983 4F 1986 AR R L AR . B AT RAR T Newcastle K2 MBI R 32 GF 5T T 5.
may AT 1997 4555 2 HI5E 183 L.





