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A Modified Clarke-Gawthrop Type Self-Tuning
Controller with Guaranteed Robust Stability *

SHAO Cheng and ZHANG Chengijin
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Abstract; In the paper, a new self-tuning controller of the Clacke-Gawthrop type is proposed
and shown to be stable with respect to unmodeled dynamics and bounded disturbances. The opti-
mal control law of the Clarke-Gawthrop type is modified by introducing an estimate of the model-
ing error as a feedback, and a modified least squares scheme with a relative deadzone is employed.
The robustness results are derived by neither requiring too much a priori knowledge of the plant
parameters, nor using any assumptions on the adaptive signals. Some simulation results are given
to illustrate the effectiveness of the new self-tuning controller.
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1T Introduction

Of adaptive control algorithms for the linear systems, an important class is the self-tun-
ing regulation with minimum variance strategy introduced by Astrom and Wittenmark!’.
Since then Clarke and Gawthrop~*! developed the self-tuning controller which penalizes not
only output error as does the self-tuning regulator, but also excessive control fluctuation,
and allows the system to be non-minimum phase and the point to change. The deterministic
convergence of the Clarke-Gawthrop type self-tuning controller was estabilished in Tsiligian-
nis and Svoronos™! for the disturbance-free case, and its robust stability for bounded distur-
bance case was investigated in Shao'®. Although Gawthrop and Lim!® gave the robust stabil-
ity of the self-tuning controller in the presence of plant nonlinerities, unmodeled distur-
bances and plant-model order mismatch, some crucial assumptions that the time delay is
minimal ( £ = 1 ) and the quantity related to the plant inputs and outputs is small, were re-
quired by the proposed method.

This paper is to exam the robust stability problem of the Clarke-Gawthrop type self-
tuning controller in the presence of unmodeled dynamics and bounded disturbances. A new
self-tuning controller of the Clarke-Gawthrop type is proposed. It is shown that the self-tun-
ing controller provides robust stability with respect to the high-order unmodeled dynamics
and bounded disturbances under rather relaxed condition. The robustness results together
with the simulation results demonstrate that the Clark-Gawthrop type self-tuning controller
is both suitable to the nonminimum phase systems and insensitive to small plant changes,

which gives support to use the Clarke-Gawthrop type self-tuning controller in practice.
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2  The Plant Description
Consider the plant represented by

— Gla- i : Ly _ BA A+ pB)
9@ = Glg™Hut —d) +v®; GG = Zq 1 pd)’ 2.1

where y and u are the scalar output and input,respectively. v is the bounded output distur-
bances, d == 1 is the plant delay, A, A", B, B’ are polynomials of unit delay operator ¢~ ' of
orders na, na» nyand ng respentively. #=>0is a small singular perturbation scalar, which

leads to the high-order unmodeled dynamics observed below. From (2.1) we have

@) = Bue — ) + 71,6, 2.2)
B —A B
ﬂp(t) = pu T—T—W Zu(t o= d) + 'l)(t)- (2. 3)

Using (2. 2) gives

1+ pA
1+ uB

Then a singular perturbation frompu>0topx=20 leads to the reduced-order model

' Al X
7,(t) = #%ﬁ%y(t) + v (). (2. 4)

y @) = %u(t —d) + ). (2.5)

The designer is assumed to be given only the reduced-order (2.5), and this without knowl-
edge of the coefficients of A and B. Thus the modeling error 7, includes the high-order un-
modeled dynamics related to y . The following assumptions are made regarding A and B . A

Al) Ais a monic polyomial, A and B are relatively prime.

A2) The order n, and 7 » and the delay d are known.

Remark 1 Assumption A1) indicates that the reduced-order model is controllable, this
is an obvious prerequisite for adaptive control. Assumption A2) provides necessary parame-
ter structure of the reduced-order model.

3 A Modified Self-Tuning Controller

The objective here is to propose a self-tuning controller on the basis of the reduced-order
model, or the knowledge of A and B , but to apply it to the plant (2. 1) such that the closed
loop system tracks the desired output and the robust stability is ensured in the presence of
the unmodeled dynamics and bounded disturbances.

Let P be arbitrary monic polynomial in g 'of ordern. Introduce the polynomial identity

P = AF + q¢7°G, : (3.1
where the orders npand ng of F and G satisfy np =d — line =na — 1 or n, which is the greater,

and F is monic also. Then from (2.2) one obtains

Py(t + d) = Gy(@®) + BFu@) + AF7,(t + 4, (3.2)
which can be written in a regressive form as follows
¢+ d) =0X@ + 1@+ ), (3.3

where $(t + d) = Py + d) ;0 is the parameter vector conposed of the coefficients of G and
BF 3 X (1) = (y(8) e+ sy —me) u(@) u(t—ng—d+ 1) +d) = AF7,(t+d). The
following results establish the fact that 7 is overbounded relatively to the values of y. We
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first give a preliminary lemma.

Lemma 1 Let C(¢g™") be a polynomial in ¢! with finite order #, . Then for arbitrary o €
(0,1) there exists ¢, > 0 such that C,(27") = 1 + pC(z™") £ 0 for all |z| > oand # € [0,
o], i.e. C,(g™Y) is strictly Hurwitz uniformly in # € [0,].

The proof is omitted.

The relative boundedness of 7 is then given by the following lemma.

Lemma 2 There exist nonnegative constants K, and K, which are independent of x , and
#4 such that for all ¢ € [0,4]

[7®) | < pK, gggly(f) | + K. 3.0

The proof is omitted.

Now let us investigate what happens if the Clarke-Gawthrop type controller is em-
ployed. Suppse 7(2) is a white noise sequence, an optimal control law can be obtained by
means of minimizing the following quadratic cost function with respect to «(z) .

J=E{[PyGt+d) —y" ¢+dDT + [Q @) — ult — 1))}, (3.5)
where P and Q' are constant weighting polynomials in g ', y*.(2) is the bounded desired out-
put. Minimizing J as in Gawthrop (1980) gives

XT@0 4+ Qut) —ut — 1)) = Py* ¢t + d), (3.6)

where Q = ¢/ Q' /b,;q' ;and b, are the leading coefficients of Q' and B » respectively. Since 7(¢)

includes unmodeled dynamics, the control law (3. 6) will not be suitable for our purpose. In

particularly, for the self—tuni'ng case, replacing fin (3. 6) by its estimate 8(¢) and then apply-
ing (3.6) to (3. 3) results in

PyG+d) —y ¢+ d) =X")0 — 0@) — Qu®) —u(t — 1)) + 7@ + d).

3.7

Thus because of unmodeled dynamics 7 the tracking errore(2) = y(¢) — y* (¢) will hardly be

ensued to tend to zero even though the parameter estimate §(z) converge to their true values.

To remove the effect of unmodeled dynamics we modify the Clarke-Gawthrop type contrcl

law (3. 6) by means of introducing an estimate of 7

1) = @) — I WOX¢ — ), (3.8)
and then a modified self-tuning control law of the Clarke-Gawthrop type is given by
XTM0® + Qu®) — ult — 1)) = Py* (¢t + d) — 7). (3.9

It is shown later that such a modification ensues both the robust stability with respect to un-
modeled dynamics and the zero average tracking error. For parameter estimation the follow-

ing modified least squares scheme is employed

6> =0¢ — 1) + A@)L()e(); (3.10a)
) =8 — "¢ — DX — d); (3.10b)
L@ =Kt —DX¢—D/[a+ X"t — DK@t — DXt — d)]; (3.10c)

Kt—1D=Kt—2) —2OLW[e+ X"¢ —d)K@t — DX¢ — d)JLT(); (3.10d)
0, if Je()| <<2B(x" max|y(s)| + 1),
A(t) o o<r<t

7, otherwise,” € [a,,3(1 — 6,)/4], 0 <o, <<3/7,

(3.10e)



674 CONTROL THEORY AND APPLICATIONS

Vol. 14

where a and f are positive adjustable parameters given by the designer and with 8= max{K,,
K,} (see (3.4)) amd (K@)} is a matrix sequence with arbitrary initial K(— 1) 0:

Remark 2 It is obvious that if the initial value of b, (¢) (the estimates of b, ) is taken not
equal to g, (the leading coefficient of G ) ,then by means of choosing A(2) or/and a,u(t)is al-
ways solvable from (3.9). Hence, the singularity in solving u(¢) from (3. 9) can be over-
come.

Remark 3 The condition B = max{K,,K;} is not crucial. In practice, we can begin
with a large initial value of B » and then reduce it when the closed loop system reaches to the
steady state, which may give a better control accuracy.

To deduce robust stability , the following assumption is necessary.

A3) The off-line choices of P and Q are such that

fgH =P@"HB@H + Qg HAGE™,@ =0 —9 D
is stable, i.e. f(2) # 0, lz| < 1.

Remark 4 This condition is basic in the Clarke-Gawthrop type self-tuning controller
(e. g- see [4~6]). However, it is made here on the reduced-order model, and the robust
adaptive control issues with respect to high-order unmodeled dynamics are considered. Since
no further assumptions are made on A and B , the reduced-order model can be unstable and
nonminimum phase.

Regarding the unmodeled dynamics only assumption is the following.

A4) A sufficiently small upper bound ¢’ of p is available. (How small * sufficiently
small” is, will be made more precise later. )

A Robust Stability Analysis '

To establish robust stability of the resulting closed loop system the following lemmas
are necessary.

Lemma 3 If 2 is sufficienfly small such that 2" < py, then for all # € [0,p" ] the pa-

rameter estimation scheme (3.10) has the following properties
o 18 A ()er)
2 }‘333 e+ X' — DK@ —2XC — )1
i @@ —1) —0¢ —d)' X | <h@ | X@ —d) ||, () >0as Eeos (4.2)
where || + || denotes the vector-Euclidean norm.
ii) A() is bounded.
Proof i) Let@@ = 8@) — 0. Define V(@) = gr (K¢ — 1)8@), then it follows from
(3.10a) ~(3.10d) that
V@) —Ve—1D
3A[a + (1 — 4A@)/

= 0. 4.1

HXT(t — DK@ — DX —d)

[e? ()

= e r X'G¢— OKG— DXt —d
A (E@) /4 — 71 @))

T At a4 —AeNX'@ — DKE — DX —d’
therefore, it follows from (3.4), (3.10e) and (4.3) that V(@) is a bounded and non-increas-

e + G — A@HX ¢ — DK — 2

YX (& — d)]

(4.3

ing sequence and thus converges. In view of (4.3) one obtains
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i AD[e+ A — 4@ /DX — DK@ — 2)X (@t —d) @)
o [a + X7t —DKGE —DX@ —d)[a+ A —2NX"¢ —dDKE — DX —d)—l
(4. 4)
From (3. 10e) it is easy to verify that
a+ A —4A®)/DX "t — Kt — DXt — d) oo
I T Ao 0)X G —DKGC—DXG—-D 1= " o
Then using (4.4) and (4.5) results in (4. 1).
ii) From (3. 10a)~ (3. 10d) one obtains
160G — D— 8¢ —d)™X¢ — )|
At — 5D (K(— 1)) ez — 5) | (4.6)

< ; la+ X"t —d — DK@ — 2 — HXGE — d — s5) 7=
where An. (K (— 1)) denotes the maximum eigenvalues of K(— 1) . Taking

A AG — ) (K(— 1)) |e — ) | s
h@) = Z e+ XTG—d—KG—2—DXGC—d—]"

and using (4. 6) and (4. 1) results in (4. 2).
iii) This is straightforward from the boundedness of V(¢) and (3. 10d). Q.E.D.

Lemma 4 The tracking error and the input dynamics satisfy

(PB + QA)e(t) = BAe®) + QA7) + 6,@), 4.7
(PB + QA)u(t — d) = ADNe(t) — PA7,@) + 8,(8), (4.8)
I8(z>l<C’+w(z)max I Xz—a |, G=1,2, (4.9)

[ S
—d

where A; = 1 — ¢7“,w(¢) - Oast — oo , and the constant C' >> 0 is independent of .

Proof Using (2.2), (3.6) one obtains

Ae(t)= Bu(t — d) + An,(¢) — Ay* ). (4.10)
Pe(t)= D) + Bt — 1) — 08¢ —d)D)™XUt — d) — Qut — d)
4+ B¢ —d)—0¢—d—1))"XU& — 2d). (4.11)

Multiplying (4.10) by @ and (4.11) by B, and then adding together results in (4.7) with
8,() =B[(B¢t — 1) — 6t — d))'X@ — d)
+ B¢ —d) — 0@ —d — 1D)'X¢ — 2d)] — QAy”* (®). (4.12)
Multiplying (4.10) by P and (4.11) by — A , and then adding together results in (4. 8) with
8,@) =A[B(t — 1) — 0 — )X — d)
+ @@ —d) — 0t —d — 1))"X ¢t — 2d)] + PAy* ). (4.13)
From (3. 10a)~ (3. 10e) one obtains
| (0¢ —d) — 8¢t —d — 1)"X1 — 2d) |

/\l/z(t—d)|€(t—d)| =
SrXC—2DKG -2 —DXG—zpJrimax | XD, . .14

where K = 0}/2A,,,, (K(—1)). Noting (4. 1) and the boundedness of y* it is evident that &;(z),
i=1,2, defined in (4.12) and (4. 13) satisfy (4.9). Q.E.D.

The robust stability results are given in the folloving theorem.

Theorem 1 Subject to assumptions A1) ~A4), there exists sufficiently small g£* > 0
Such that the self-tuning controller applied to plant (2.1) ensures that
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i) The closed loop system is globally robust stable in the sense that y and « are bounded
for arbitrary bounded initial conditions and # € [0,u"].

ii) The tracking error satisfies

lim NZe(l‘) = 0. (4.15)

iii) In addition, for constant disturbancd v (unnecessarily equal to zero) and fixed refer-
ence signal y* it follows that
lim(y(2) — y*) = 0. (4.16)

t—>o00

Proof i) From lemmas 2 and 4, and assumption A3) it follows that there exist p* (<
) and non-negative constants K K,,K3, Ky, K, K;,K3,K} , such that for arbitrary initial
time £, == 0 , and for allz >
ly@®) | <K+ K; max|e(r) | + Kyp max]y(r) | + K, max w(r) max || X(z —d) || »

0Tt (B2

4.17
lu —d)| < Ki+ K, maxle(r)| + Kp max]y(r) | + K4 max w(‘r) max || X(z — &) ||.

[E i) [S £td

(4.18)
If ¢ is small such that K;x* <1/2 , then from (4. 17) one obtains that for all z € [0, " ]
max |y(0) | < 2K + K; max]e(r)l + 2K, max w(r) max | Xz — ) ||. (4.19

(5 2 O=rt [z

Substituting (4.19) into (4.18) it follows that there exist non-negative constants Kg,Kj, K7
such that for sufficiently large zand ¢ € [0,z ]

lut — d)| < K; + K; maxl (] + K, max w(r) max | X(z — ) || . (4.20)
[E o
For sufficiently large ¢ such that K w(t) < 1/2 then
max | X(z—a) | <2K5—|—2K6max|e(r)|, (4,21)

which from (4.19) follows that there exist constants K, and K, such that
max|y(r)| <K, + K, maxl () ]. (4.22)

(Bt S 0Tt

Hence the boudedness of X (¢) can be ensured by that of €(z) . The proof is given by contra-
diction. Assume that £(z) is unbounded. Then for arbitrarily large # define the sequence z, =

min{z| |e@)| =n,t2>0} . Along it we have maxle(r) | = |e(t,) | and lim €(¢,) = oo and from

\f\ 1 —~ 00

(4. 22) one obtains
20" maxlsO\ + D 28Ky +1)

et | = el
provided ¢, is sufficiently large and " is sufficiently small. It follows from (3. 10e) that for

+ 281K, <1 (4.23)

sufficiently large t,,A(z,) # 0 , which from (4. 21) implies that

hm Al/z (t )le(f“)| O'é/z
s~ L@+ XTG, — DK@, — 2)X(, —d)J'”/zlm (K(— 1)K

which contradicts to (4.1). This means that the assumption that €(¢) is unbounded is false,

>0,

and thus the proof of Theorem 1 1) is completed.
ii) Using (4. 11) one obtains
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N N d—1 N
DPe@ = > @) — De@ + >,@0¢ — 1) — 8¢ — d)TX@ — d) — Qu(N — d)
t=d t=N—d—1 =0 t=d
N
+ Qu(0) + D, (B¢ — d) — 8t — 2d)TX (t — 2d). (4.24)
t=d

Since all signals in the adaptive control system are bounded, it follows from (4. 2),(4.14),
(4.1) and (4. 24) that

. 1 N . 1 N
P(1) }V‘I’i’c N;e(t) = lim N;Pe(t) = 0. (4. 25)

Assumption A3) implies P(1) # 0 , the result thus follows.
iii) Using (4.1) and the boundedness of y and « , gives limAY2(¢)e(z) = 0. Which from

(3. 10e) follows that there exists a sufficiently large time ¢, such that for all £ >>#,,A(z) = 0.
Therefore, when t'> t, the parameter estimates defined in (3,9) enter the relative deadzone,
and furthermore the control law (3. 9) becomes linear and time-invariant. Since the closed
loop system is BIBO stable, then for constant v and fixed v* it will approach to steady state.
Using (4.15) the conclusion is derived readily. Q.E.D.

5 Simulation Examples

Example 1 Consider a 3-order unstable minimum phase plant with delay 2

_ BA+uB)
AQ+ pA)

where A=1+q¢'+¢ % B=1,A"=q ',B' =2¢',v() is a white noise sequence with vari-
ance of 0. 01. We choose Pand Qas P(¢™!) =6+ 597!+ ¢ %,Q(¢"!) = 1and takea = 1,8
=1,7=1/2,p¢= p* = 0. 01 with initial conditions §(0) = [— 3. 5,0. 3,5.4, — 0. 2]", K(1)

=1I>>0. As shown in figure 1, the self-tuning controller works well even if there exist high-

y() u(t — 2) +v(@), (5.1

order unmodeled dynamics and disturbances.

Example 2 the self-tuning controller works in the case that the reduced-order model is
of nonminimum phase is investigated. The plant is as (5.1) where B = 0.5 + ¢~ !. For de-
signing the self-tuning controller, P(¢7!) = 9+ 3¢7' + ¢ 2,Q(¢g7) = 2,a=1,8=5,7 =
1/2,p = p* = 0. 01 with initial conditions 8(0) = [6, —4, — 6,6,4.5]",K(1) =1>0. As
shown in figure 2, the self-tuning controller can be suitable to the unstable nonminimum
phase plant with satisfactory.

6 Conclusions
In this paper we show that the useful Clarke-Gawthrop self-tuning controller can be

modified to give robust stability properties with respect to the high-order unmodeled dynam-
2 : v 4 -

1 3 2
0 1 0
—1 = —2
—2 - L —— —4 . .
Q 100 200 300 0 100 200 300

Fig. 1 The plant output and the reference output Fig. 2 The plant output and the reference output
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L =

ics and bounded external disturbances. In addition, such a modification removes all steady
state errors appearing in the adaptive control system. Therefore, the robustness stability and
simulation results give the support for the use of Clarke-Gawthrop self-tuning controller in

practice.
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