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Delay-Independent Stability of Linear Systems with Multiple
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Abstract: In this paper,we estabilsh some delay-independent stability criteria for linear time-
delay systems including large-scale time-delay systems. The time delays under consideration are
multiple and can be arbitrary unknown but constant. Therefore, the obtained results do not de-
pend on the delays. For linear large-scale time-delay systems, an illustrative example shows that
our results are better than the existing ones in the literature.
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7 Introduction /

Over past thirty years, there has been a great amount of literature discussing stability of
time-delay systems. The research approaches are either via frequency-domain or via time-do-
main. The main time-domain methods are Lyapunov methods [1]. The recent results have
involved Lyapunov functional method % , Lyapunov-Razumikhin method 7} and vector
Lyapunov function/functional method ¥~

In this paper, some delay-independent stability criteria for linear systems with multiple
time delays including large-scale time-delay systems are established by Lyapunov functional
method together with a vector inequality. The time delays under consideration can be arbi-
trary unknown but constant ones. An illustrative example shows that our results are less
conservative than the existing ones in the literature. In the following, Section 2 gives the
main results, Section 3 provides the illustrative example, and Section 4 concludes our discus-
sion.

Notation 2T and M" denote the transpose of a vector x € R"and a matrix M € R"*", re-

spectively. Ay (M) and A, (M) denote the maximum and minimum eigenvalue of M, respective-
ly. |z|l,= (Z;‘:1|x‘|2)uz and | M ||, = [Au(M"M) V2.
2 Main Results

Let us consider the linear system with multiple delays described by
»
() = Az(t) + > Baxt — 1)), 0<1,<r<Coo,t =0, ;
i=1 1)
.Z‘(t) :770)’ t e [_7’0]9
where x(z) € R*, A, B, € R"™",7 = 1,2,+,p, are constant matrices, T;,i = 1,2,*» P, are
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any unknown but constant delays, and ¢(2) denotes a continuous vector-valued initial func-
tion.
We assume that A is stable. Then, the Lyapunov equation
PA + A™P =—2Q, )
has the unique # X n symmetric and positive definite solution P , where Qis ann X n symmet-
ric and positive definite matrix.

Theorem 1 System (1) is asymptotically stable if

| PLBy+B, 112 < L/E?, 3
where P and Q satisfy (2).
Proof Let
) ? ¢
V@) = S@OPz@ + ¢ | @z)ds, @
i=1 YN

where P is the solution of (2) and € > 0 is a positive constant. Along the trajectory of system

(1), we obtain

. 4
V (2(0)) = 227 OPAz(@) + 227 (P 2 Bixt — )
i=1

?
S @@ — ¢ — wxE — W)
i=1

x(@ — 1)
=— 22T()Qx(®) + 2xT(t>P[Bl---Bp][ ] (5>
(@ — T,)
P
+ e, W @) — 2T@¢ — )z — ).
i=1
It is easy to show that
2uT Mo < %uTMMTu + &'y, u € R,vER", (6

holds for any constant € > 0 and any constant matrix M € R"™". By using (6, we further ob-

tain

V ()< — 2T (OQz () + w2 OPL[Bi+B,1[BirwB, I Pr(®)
? ' ? '
+ erT(t — )z — ) + ez (T Wz — 7@ — Dt — 7)) (7)
= i=1

=— 22T ()Qx () + —%xT(t)P[BlmB,][Bl---B,,]TPx(t) + epxT @)z ).
Let

| P[By~+B,][B.*B,1'P || » 12
[ = ] . ®)

Substituting (8) into (7) yields

V(@) <— 2[4,@Q) — (p I P[Bl-"Bp][Bl---B,,]TP 2] =@ |l 3 (9
Note that || P[BIH-B,,][BI---B,,]TP I| vz = | P[B,B,] 1l .. If (3) holds, then we have
V@) <— 20 z@® | % ao
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where p = 4,(Q) — v p || P[B,B,] | ,> 0. We complete the proof.
Corollary 1 Let P is the solution of (2) with a symmetric and positive definite matrix

Q. System (1) is asymptotically stable if 1)

| [By+B,] | , <— Aul(A+ AD/2]/ VP an
with P = 1I,, or ii)
I P[Bl'"Bj:] . <<1/ ‘/; a2
withQ = I, or iii)
| [By=B, N . <9/ V' p) (13)
with @ = I, and |eca+aDr|, < ke ™,2 >0,k >1,7> 0, or iv)
| [C1/d) By (1/d)B, ] 1, <— [ (A + AT)/2] (14)
with P =1,, or
| PLC1/d)By+(1/d,)B, 11l . <1 (15)
with@ =1,, or
| CQ1/d) By (1/d)B, 11, <<7/k (16)

with Q@ = I, and “e“‘MT)‘ “ , ket =0,k >1,7>0, where d; > 0 are constants such that
> 7 d}=1lin (14), (15) and (16).

Proof i) Let P = I,. Note that 4,(Q) =— A [ (A + A")/2]. Therefore, (3) implies
(11). i) Let @ = I,. Then, it is easy to see that (3) implies (12). ii) Let |e+4D:], <

ke~ .t >0, for somek >1,and 7> 0,and Q = I,. Tt is well known that P = ZJ AT dy

0
which gives
1PN, <2f ferratn]de < oh[emde = k/ an
0 0

Note that || P[BiB,1ll, << [| P, | [By+B,]1l .. We obtain (13) almost immediately

»
from the proof of Theorem 1. iv) Let V(x()) = 2T @) Px () + GZJ

(i
v

d2xT (s)x(s)ds,
where d; > 0 are constants such that Z;d? = 1. Based on a similar procesure from (5) to
(10) with e = (|| P[(1/d,)By+++(1/d,)B,1[(1/d)B,++-(1/d,)B,]'P I )2 and the above
proofs: 1), ii) and iii), it is not difficult to derive (14),(15) and (16), respectively.
Remark 1 Tt is easy to see that the results in Corollary 1 have been given [11] but we

prove them by time-domain method.

Remark 2 Let p = land B, = E@®) with || E@ || ,<<%,7<{0. Then, (3) implies Theo-
rem 1 given in [12]. If let B; = 7.(0)E;»i = 1,2, ¢, and by introducing a similarity trans-
formation matrix T, one can further improve (3) by choosing a proper matrix T' and obtain
Theorem 2 of [12]. ;

In the following, we extend the above technique to linear large-scale time-delay system
in the form

N
{x',-o:) = Az, () + D Ayt — 1), t2=0,i=1,2,,N, s
j 18

xi(t) :%(t), tE_[— 7'90]9
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N

N
) B I s B ’ Mo RIRINI PN .
where x;(¢) € ", _E n, = L0 = R XM X e X N ,/L € W and A, € Kt

are constant matrices, 0 < 7; <r<{o00,i,j=1,2,*,N, denote arbitrary unknown but con-

i=1

stant time delays, and @(#),i = 1,2,+-*, N, denote the initial functions ont € [— r,0].
Assume that A4; is stable for alli = 1,2,+--,N. Then, the Lyapunov equation
PA, + AP, =— 2Q:, e5))
has the unique 7; X n; symmetric and positive definite solution I;, where @;is ann; X n; sym-
metric and positive definite matrix.
Theorem 2 System (18) is asymptotically stable if

AIZH(QI)
” Pi[Ail"'AiN] ” %

where P, and Q; satisfy (19).
Proof Let

>N, i=1,2,-+,N, (20)

N N ;
V) = >,[Yal @WPzi(®)) + EJ 2l (s)a; (s)ds], 21)
i=1 =177
where P, is the solution of (19) and ¥, > 0, = 1,2,*+, N, are positive constants. Along the
trajectory of system (18), we obtain
0 N N
V (x@) =D {— 2l OQux @) + D (& W) — 2@ — 1)x, ¢ — 7))
=1 =1
& (is=17;)
+ 2V.aT @ P[ Ay Ain] e 22>
an(t — Tn)
By inequality (6), we further obtain
: N
V ()< ZE* 27.x! ()Qux; (1) + ylzx;'r(t)Pi[Ail“'Av'N:H:Ail'"AiN:lTPiIf(t)
i=1

i=

N
+ DAt @ — ridx; ¢ — )

=1
N
4 ST Wz @) — ¢ — iz — 1))] (23)
=i
N
<— S[27A.Q) — 7 || PLAx A i JLAn+AWT P . — N1z @ |1 5.
i=1
Let
A,(Q) .
V= = : 59 :1925"'9N- 24
” Pi[Ail'“AiN:l ” 2 ; S
We further obtain
. o 22 (Q,
V) S— D eS8 NT | m (25)
i=1

[ P.LAy ATl 5
If (20) holds, then we have V < 0, This gives the proofl of the theorem.

Remark 3 In the derivation of Theorem 2, unlike some existing results2f:15:14]

, we do
not use the properties of M-matrix.

Remark 4 For system (18), Ohta and Slijak'® recently gave a stability condition that
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the N X N test matrix O = (o;;) defined by
QP — | PPARQ |,y i=
T {— I P2 AQ7 2 | 5 i
is an M-matrix, where P; and Q; satisfy (19), and more recently, Xu and Xu"*! estabilished

(26)

a stability result under the condition that the following N X N matrix H = (3;;).
(W@ — 1P | i=
77ij_{_ “ PiAij(x) || 25 i?’—‘j

is an M-matrix, where P,and Q;satisfy (19) and S = {z |z € C and |z| = 1}. In the next sec-

27

tion, we will give an example to show that our result is better than these results.

3 An Illustrative Example
Example 1 Consider system (18) with N = 2,

=)= 4 0.2 0 0.2 0
A = y An = sy A= ’
1 0 0 0.1 0 0.25

=90 el 1.1 0 ] AR O35
A, = y Ay = s Ay = .
0 = % 0.6 0.8 0 0.8

respectively. Let @, = I,and Q, = I,, where I, denotes the 2 X2 identity matrix. Solving two

Lyapunov equations shown as (19), we obtain

[0.5 0.5} [ 0. 5000 —0.1250}
P, = , P, = ,

0:558"92. 5 — 0.1250 0.5625
fori = 1,2, respectively. By Theorem 2, we have
! — 2.0014 > 2, . — 2.0173> 2,

1P LA AL TS IP.LA, AT (1
respectively. Therefore, the system is asymptotically stable. But (26) and (27) yield
. [ 0.4369 — 0. 4009] - [ 0.7172 — 0. 6483} .
— 0. 8454 0.5020 == 0.958i78 0. 4828
respectively. It is easy to check that both O and H are not M-matrix. For this example, our

result is better than those obtained by Ohta and Siljak™! and Xu and Xu™*.
4 Conclusion

Some stabiliy criteria for linear systems with multiple delays including linear large-scale
time-delay systems have been provided in this paper. The time delays under consideration are
arbitrary unknown but constant ones. Therefore, the obtained results are delay-indepen-
dent. It is pointed out in the remarks that some of the obtained results are the same as some
existing results in the recent literature but they are proved by Lyapunov functional method
together with a vector inequality. For linear large-scale time-delay systems, an illustrative

example shows that our result is less conservative than the existing ones in the literature.
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