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Abstract: In this paper, the problem of designing variance-constrained fault-tolerant con-
trollers for discrete-time stochastic systems is considered. The purpose of the addressed problem is
to find the feedback controller so that the closed-loop system satisfies the prespecified steady-state
variance constraints,and remains asymptotically stable against possible sensor failures,simultane-
ously. The sufficient conditons for the existence of variance-constrained fault-tolerant controllers
are characterized. The analytical expression of desired controllers is also pressented.
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1 Introduction

In recent years,significant effort in the fileds of stochastic control theory has been de-
voted to the variance-constrained design,and the literature on this problem is extensive and
reflects considerable current activity. The practical motivation for this problem is that,in
many engineering control systems, the performance requirements are usually described in
terms of upper bounds on the individual steady-state variance values. Traditional control de-
sign techniques,such as LQG control and H,/H.. control,are difficult to solve the variance-
constrained design problem,since they can not ensure that the prespecified individual vari-
ance constraint will be satisfied. The covariance control theory™'*,which was first developed
in 1987, has provided a much more straightforword and effective approach to the variance-
constrained problem. The main idea of this theory is to specify a state covariance matrix X to
the different requirements on the system robustness and performance,and then design a con-
troller such that the state covariance of the resulting closed-loop system is equal to this speci-
fied X . Therefore, this closed~foop system will possess the desired performance require-
ments.

On the other hand, the designed MIMO systems may not achieve the desired perfor-
mance requirements and even become unstable when the feedback signals are switched off by
a failure in the actuator or in the sensor,even if tile open-loop system is stable. The property
remaining stable in the presence of failures in the actuator or the sensor is called integrity,
and hence integrity is a type of fault-tolerant with respect to stability in the MIMO feedback
control system*), However, very few papers are concerned with the problem of variance-
constrained control design possessing integrity for linear stochastic systems. The problem of

fault-tolerant variance-constrained control design for continuous-time systems has been re-
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searched in [5] by the authors, and thus the present paper will be concentrated on the dis-
crete-time case.
2 Problem Formulation and Assumptions
Consider the stationary vector process x generated by

2k + 1) = Az (k) + Bu(k) + Dw(k), u(k) = Gx(k). @D
where z € R™ ,u € R* ,w € R™ ;w (k) is a zero mean white noise sequence with covariance
I; and w(k) and x(0) are uncorrelated. A,B,D,G are the matrices with appropriate dimen-
sions and DDT > 0. The pairs (A,B) and (A,D) are, respectively, assumed to be stabilizable
and controllable.

To represent a sensor failure in any of the feedback loops, we introduce a switching ma-
trix F, inserted between the controller gain and the state, as F = diag[f, f, += [, 1, where £
for i == 1,2, ,n,, is either one or zero. the value f; = 0 corresponds to a sensor failure and
. = 1 corresponds to a normal situation in the 7th-loop. Hence, the closed-loop system
which represents possible sensor failures becomes

2k + 1) = (A + BGF)z(k) + Dw(k). )
If A - BGF is Schur stable, then the steady-state covariance X = }{LI}:E [z(B)xT (k)] ex-

ists and satisfies the discrete Lyapunov equation X = (A + BGF)X(A + BGF)" + DD".

Let the notion £2 be the set of diagonal matrices whose diagonal elements are arbitrary
compositions of 1 or 0 (except zero-matrix). We now can conclude the fault-tolerant vari-
ance-constrained problem as follows. The problem under consideration is to determine state
feedback controller G such that 1) the closed-loop system (2) remains stable for arbitrary F'
€ Rand 2) the individual state meets the prespecified steady-state variance constraint, i.e. »
X, <otG = 1,2, ,m,) » where X is the steady-state covariance. It should be pointed out
that the given variance constraint o? can be determined by practical requirements and can not
more than the minimal variance value obtained from the traditional minimal variance control
theory.

3 Main Results

In this section, the detailed proofs of main theorems are omitted due to the space limita-
tion.

Theorem 1 Consider the closed-loop system (2) where F € 2 is the arbitrary given
switching matrix. If there exists a scalar >0 such that the following algebraic matrix equa-
tion

P = APA™ + eAP?AT + (e + | P || )BGG™BT + DD* (3)
has a positive definite solution P > 0, then 1) the closed-loop matrix A + BGF is stable for
arbitrary F € £2, and 2) the steady-state covariance X exists and satisfies X << P.

The proof of Theorem 1 can be easily completed by considering the following facts

FFT<<I, 0< (¢*APF — e V2BG) (V2 APF — e V2BG)",
0 < BG(|| FPF* || I — FPF)G'B" < | P || BGG'BT — (BGF)P(BGF)T,

and using the discréte-time Lyapunov stability theory.
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Remark 1 Theorem 1 shows that the integrity constraint is automatically enforced
when a positive definite solution to (3) is known to exist. Furthermore, all such solutions
provide upper bounds for the actural closed-loop steady-state covariance X, and therefore
this behaviour can be utilized to achieve the prespecified variance constraint.

Remark 2 We can achieve the purpose of mixed fault-tolerant variance-constrained de-
sign by using the following approach: choose the proper positive definite matrix P which sat-
isfies

[(Pl:<<oal, (G=1,2,>,m), €Y
and then find the controller G and the parameter € meeting Eq. (3). If such a controller exists
and can obtained, then it follows from Theorem 1 that A + BGF is stable and [ X ]; < [P
<o?,i=1,2,,n,,and therefore the design task will be accomplished. In fact, the problem
under study in this paper can be converted to an auxiliary “ P -matrix assignment” problem.
To be able to work in a more definitive term, the following definitions is introduced.

Definition 1 The given positive definite matrix P satisfying (4) is said to be assignable
if there exist a controller and a scalar € > 0 such that (3) is satisfied.

The following result characterizes the assignability condition of a given positive definite
matrix.

Theorem 2 Let the positive definite matrix P satisfying (4) be given. Then this matrix
P is assignable if and only if there exists a constant € > 0 such that

P — APAT — eAP?*AT — DD" >0, (5)
(I — BB™)(P — APA"™ — ¢AP?A" — DD™)(I — BB*) =0 (6)
where B denotes the generalized inverse of B.

The analytical expression of controllers assigning the assignable matrix P is given as fol-
lows. '

Theorem 3 If the specified positive definite matrix P satisfying (4) is assignable, then
all controllers which assign matrix P can be parameterized as

G=('+ |P|)VTV+ T —B"B)Z, N
where T is the square root of P — APAT — eAP?A" — DD, V is arbitrary orthogonal and Z
is arbitrary with proper dimensions.

Theorem 2 and Theorem 3 can be proved by using the generalized inverse theory and the
fact that MM™ = NNTiff there exists an orthogonal matrix V meeting M = NV. The follow-
ing result, which gives the solution to the problem of fault-tolerant variance-constrained con-
troller design, is easily seen in the view of Theorem 2 and Theorem 3.

Theorem 4 Consider the closed-loop system (2). Given the constraints on the steady-
state variance o2(¢ = 1,2,+,n,). If there exists a positive definite matrix P satisfying (4)
(5)(6), then the desired fault-tolerant variance-constrained controllers can be obtained by
(D.

Remark 3 In the design of practical control systems, we are usually required to con-
struct an assignable matrix P satisfying (4) (5) from the assignability condition (6), and

then obtain the desired controllers from (7) immediately. Note that (6) is actually a general-




924 CONTROL THEORY AND APPLICATIONS Vol. 14

ized algebraic Riccati equations which also appeared in [2] with similar form, we can solve it
by using the same method proposed in [2].
4 Conclusions

An algebraic design approach has been developed to ensure stability and variance con-
straints in the presence of sensor failures. The controllers which guarantee stability and vari-
ance constraints have been characterized and a design method has also been presented based
on the generalized inverse theory. Further work will center on the study of convergence of

algorithm for the proposed controller design procedure.
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