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Approximate Linearization of Nonlinear Systems
A Neural Network Approach”
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Abstract: Recent researches show that neural networks have the ablilty to approximate a
function as well as its derivatives. This result offers a promising opportunity to introduce neural
network theory into nonlinear system control. In this paper a novel method of approximate nonlin-
ear system linearization with neural networks is proposed. The network approximator is designed
to integrate the involutive equation of a nonlinear system whether the integrability condition is sat-
isfied or not. Simulation results show that this method is feasible.
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1 Introduction

It is well known that differential geometric methods have become powerful techniques
for understanding input-output and full state linearization of nonlinear systems""?, However,
the conditions for feedback linearization of nonlinear systems are restrictive. So,it is of prac-
tical interest to investigate extensions when these conditions can not be satisfied well but vio-
lated only slightly. There have been proposed some methods,among them, the approximate
linearization has shown much feasibility®,

Most results concerning approximate transformations for feedback linearizable systems
or non feedback linearizable systems involve approximations of the systems themselvest®, In
[3],Krener introduces o -th order linear systems and the equivalent concepts of ¢-th order
involutivity and p -th order integrability at a point for certain distributions. He also provided
a constructive algorithm that yields an approximate transformation. Along this route,several
algorithms have been proposed for the realization of approximate transformationt®~*,

It has become a general recognition that artificial neural networks (ANNs)can be applied
to approach any given function with any given precision[®), Recent research shows that,be-
sides the given function,the derivative of the function can be also approximated as well with
the same neural network!"''?), This result offers us an opportunity to introduce neural net-
works to the powerful nonlinear system linearization theories ,because the Lie algebrics and
the Lie brackets of a nonlinear system may be constructed with neural networks.

Inspired by the work of approximate linearization in[3,4],we propose a néw nonlinear
system approximation strategy in this paper. With the capability of neural network approxi-

mation of a function and its derivatives,the proposed network approximator can be automati-
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cally trained to approximately satisfy the integrability condition. This means that,no matter
whether the linearization condition is satisfied or not,the given nonllnear system can by ap-
proximately linearizied with the geometric method. »

The rest of this paper is organized as follows : First,the. approximation capability of neu-
ral networks is discussed in Section 2. In Section 3,after an introduction of nonlinear system
linearizability condition,the approximate linearization method with neural networks as well
as a convergence analysis are proposed. In Section 4,a typical example of a beam and ball sys-
tem control is given to show the feasibility of this method. In Section 5,we give the conclu-
sion and discussions.

2 Neural Networks and Their Approximation Capabilities

The capability of sufficiently complex multilayer feedforward networks to approximate
an unknown mapping f :R*—R arbitrarily well has been investigated in detail in[10]. Kurt
Hornik. et. al. ,extended this result into Sobolev space in their recent work™,and rigorously
pointed out that multilayer feedforward networks with a single hidden layer and an appropri-
ately smooth hidden layer activation function are capable of approaching an arbitrary function
and its derivatives.

An example of the application of this result is to approximately integrate partial differ-
ential equations which will show its importance in the next section. We note that any network
which is suitably trained to approximate a mapping satisfying some nonlinear partial differen-
tial equations will have an output function that itself approximately satisfies this partial dif-
ferential equation by virtue of its approximation of the mapping’s derivatives. To construct
these neural networks,an extended backpropagation training algorithm is proposed in the
Appendix, where, for the reason of simplicity, the errors of only one degree derivatives are
considered.

3 Approximate Linearizatin with Neural Networks
Consider a SISO nonlinear system of the form
= f(z) + g(x)u, P!
where f and g are smooth ( C'with sufficiently large) vector fields defined on an open subset
of R". Let 2° be an equilibrium point of the undriven system,i. e. f(z°) = 0. The conditions
for inbut—to—state linearization are well known

Theorem 3. 1) The nonlinear system (2) can be locally (around x°) transformed into a
controllable linear system by state feedback and a change of coordinates if and only if

dim span{g adsg <+ adi'g)=n )
and A(f,g): =span{g adsg - adyig) 3
is involutive,both in a neighborhood of z°.

The first condition (3) can be thought of as a local controllability (or linear controlla-
bility) condition and is usually satisfied by the type of systems that we encounter (or
design) in engineering. The second condition (4) is an integrability condition that is violated
by many practical systems[®7,

When these conditions are satisfied ,one can define a nutural output for the system(2).
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Indeed , by the Frobenius theorem ,conditions (3) and (4) imply that the partial differential e-

quation

%Eg adyg ++ adiig]l=0 4)

has a nontrivial solution A(x) .

While the involutivity condition of 4 of (4) is not always satisfied in engineering prac-
tice, one possible way to linearize system (2) in engineering is to take an approximate ap-
proach to integrate A . The results discussed in last section inspire us to engage a neural net-
work @ (z,w) € 3(G) ,w’ = (B7,7") to learn to approximately integrate the partial differen-
tial equation (5).

The involutiveness of span {g,ad;g,**,ad} *g} is equivalent to the existence of a non-
zero scale function A : M — R satisfying < dh,adg >= 0,1 = 0,1,++*yn — 2 . Hence,feedback
linearizability of the system of (2) reduces to the existence of function 2: M — R such that

[<dhadig>=0, i=0,1,n— 2,
| < dh,adyg >+ 0.

For a system of (2),if a neural network h(x) = ®(x,w) can approximately satisfy the invo-

%)

lutivity condition (5),or equivalently
| <dh,adig > | <e, i=0,1,'n—2,
< dh,adj'g >7#0

the system (2) is said to be approximately linearizable with neural networks.

(6)

The learning process of this neural network can be implemented by the simple backprop-
agation method with the difference that the neural network has to approach not only a func-
tion but the compositions of its derivatives with other functions as well.

According to (7),the learning error function is defined as

n—2
E= >l <d$,adig> |"* €]
i=1
Usually the function Zin (6) is chosen as the naturel output function of the system (2),s0 an

another term should be added into the error function

n—2
E=l¢—yll2+ D)l <dp,adig> |2 (8
i=1

To train the engaged neural network @(x,w) ,backpropagation algorithm is used in this pa-

per. The learning rule

dw aE

aF =i €D
is a little more complicated one compared with the existing backpropagation method. An ex-
amplary one with i = 1is given in the appendix.
With the trained neural network in hand,one then defines a change of coordinates u(x)
= (g (x), 4, (x)) by
{#l(x) = ¢(x), a1

wi(x) = Ly (), 2<Xi<Knm,
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then we have the new system
].’-“l = p, + Oyu,
an
foumy = fa + gty
]fe,, = d(z) + a@)u,
where 8, = 1 <dp,adig >,i =1, ,n— 2,and || 9; | < ¢, Neglect the small value terms,

and choose
— __1_ N
u = a(x)[ d(x) +v], a2

the original system can be transformed approximately into a linear system in Brunovsky
canonical form by the coordinate change #=pu(x) and the state feedback (13).
For the tracking problem,the error bounds are analyzed as follows: .
Choose
v =y + k(o — y¢V) o+ ke (i — 34D a
where £, ,++,k,_, is selected such that s, + &5, ; + *** + k,_;sis a stable polynomial. Define e
=Y, — pu ,the closed loop system can be written as
e = Ae + Su, (14)
where A is a Hurwitz matrix defined by v of (14). Suppose that Y, = (34,88 ,++538) is
bounded,i.e. , || Yil << kgsko > 0, it is easy to show that

ol = | (=YD + Y, 0 < llell + & 15)

and

r 1

Nd@ e | <kl el, | a—@_l(#))l < kyy kisk, >0, (16)

then
|| Su ” < heCllell + k), ky =k o ks an

Choose a Lyapunov function

v = ¢ Pe, (18)

where P > 0is chosen such that ATP + PA = — I . Differentiating V along the trajectories of
the closed loop system of (2),we have
V=— |lell?+ 2¢"P - (3 +u)
<— el thllelleCllell + 4D
=— A~k el + kel
— (A — k&)l e |2 — 2koks || e || € + kikie®) + (1 — k,e)kikie?

=— (1 —k&)+ llell « Clell — 2kokse). (19)
When || e || > 2kokse, there exists
V<— A= k) - el » Cllell — 2kkee) <— QA — 2o el ® 20)

Which implies that, e(#) will exponentially converge to a ball of order ¢,
Further more,if we choose e, = max{k,,e} ,from (20),it is easy to find that as long as

ll el > 2ksek, the convergence property also exits. This means e(z) will exponentially con-
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verge to a ball of order €.
The above discussion can be concluded as:
Thorem 3.2 Suppose syste'm (2) is controllable at 2°, and there exist a neural network
which satisfies (7) for a given € > 0 around z°. Then,if the desired trajectory Y,is bounded,
the coordinate change p#(x) of (11) and the control law (13) (14)result in local exponential
stable approximate tracking around x°. The tracking error bound will be of order €. Further-
more,if || Y, || <Ce, the tracking error bound will be order of € .
4 A Ball and Beam Example )
To demonstrate the feasibility of the '
proposed method, a typical simulation ex-
periment, the ball and beam system as

shown in Fig. 1,is engaged in.

The dynamic equations of this system

are given by Fig. 1 Ball and beam system

(% -+ M)# + MGsinf — Mr8§* = 0,

(Mr* 4+ J + J,)0 + 2Mrif+ MGrcosd = t, @D
where ris the torque applied to the beam, J is the moment of inertia of the beam, M and J,
represent the mass and moment of inertia of the ball respectively, R is the radius of the ball,

G stands for the acceleration of gravity.
Define

x = (x),x49,2x; ax4)T = (T’T.‘vaae)Ta

p__ M , — L= 2Mrig— MGreosf
JJ/R*+ M’ Mt 4+ J + J,
the system can be written in state-space form as
2] Zy 0
Zy B(x,xt — Gsinxy) 0
2 — 2, 0 U,
&) , 0 1

As discussed in[[7],this system does not satisfy the involutivity condition (4). So it can not
be linearized by feedback linearization. We use a feedforward neural network to learn to ap-
proximately integrate the partial differential equation (5) of this system in a specific domain,
so that an approximate nonlinear transformation can be constructed in this domain and the
system can then be linearized in an approximate sense.

The engaged feedforward neural network consists of four inputs (x,,2;,x3,x,), one out-
put («) and one single hidden layer containing 15 nodes with the activation functions shown
as below

e? — e~ %

The training process is designed as:
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i) Move the beam manually or with a simple controller (the linear controller for
example) near the desired trajectory to collect the input-output data,then train the network
with these data so that the neural network constructed controller can operate the system
(though with a very bad performance).

ii) Retrain the network with the newly collected input-output data of the system operat-
ed by the constructed controller with the trained network.

iii) Repeat step ii) till a satisfied performance is approved.

The training process can be implemented on-line or off-line. For simplicity ,off-line train-
ing is chosen in this paper. A similar training algorithm is described in the appendix,where a
general backpropagation of the errors on the derivatives of only one degree is shown. What
used in this paper is a more complicated one (on the derivatives up to third degree) which is
not shown for short.

The desired trajectory is chosen as y,(t) =3cos(nt /5). Fig. 2 and Fig. 3 show that after
some training of step i) and ii),the neural network constructed feedback has gained some a-
bility to operate the beam-ball system with a poor performance. With the training going on
the tracking errors decrease. Fig. 4,Fig. 5 and Fig. 6 show that after about 8000 times train-
ing,the tracking error has been tightly bounded which means the system has been approxi-
mately linearized. Fig. 7 describes the seperate learning errors of (8) at this:time,where the

bold,dashed and doted lines represent 6, ,8, and &, separately.
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5 Conclusion and Discussion
Neural network approximation of a function and its derivatives offers a very promising
tool to introduce neural network theory to control system design™?, This paper is a prelimi-

nary application of this method to nonlinear system linearization. Being different from other
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sita deltas
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0 5 10 15 20

t/s t/s
Fig. 6 Angle of the beam Fig. 7 Learning errors

neural network linearization methods!*,this proposed algorithm has less constraints and can
be much more widely used,especially to nonlinearizable systems. Furthermore,it is easy to
implement this control,because only off-line learning is needed to train the neural network.
The feasibility shown in simulation experiment encourages us to pursuit further work along
these directions:1) extend this result to nonlinear systems containing zero-dynamics;2) in-
troduce sliding control to compensate the effect of uncertainties in the successive differentia-
tions of the neural network constructed output (12). This idea has been discussed for robust
input-output feedback linearization of nonlinear systems with “unmatching uncertainties”t'l;
3) look for other neural network models and training algorithms which will be more efficient

for linearization feedback design.
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Appendix
Back Propagation of the Error on the Derivatives
Consider a feedforward neural network with » layers with a vector input (x}). Let V* and X* denote the
potential and the state of neuron j from layer £, having activation function G() s % denote the partial derivative
of hte state X} with respect to the ¢’th input X!,
Vi — Zwm,ﬁ“=mwm.

art
o O IS Bk k41 ! (VA1 YV R+
Vi =3, Y& E Wi Yt = G (VE D) AR
q s

and consider the cost function on the z -th layer E(ai, y5) as well as the equalities,

the gradient of £ with respect to w is proposed as
oF E .,

a.r = Zwﬂ PR erel (Vk+1) R EYH,
‘I
aqu zwl 3 A+]G’ Vk+1),
J
9E E '
5@g=abaaﬂ)”h+§] HEC'IDYha\ + k+ 1, + G (VH.

It is easy to find that the standard back«propagatlon formulas can be deduced if we replace ¥ and Y4 by zero,

IdE
and QG’ (V5 by o~
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