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A Hidden Node Value Regulation Algorithm
for Neural Network Training
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Abstract; Error back propagation algorithm is widely used for the training of multi layer feed
forward neural networks. But the convergency of this method is actually an open problem,which
often leads to its poor generalization capacity. In this paper,we probe the situation and propose a
Hidden Node Value Regulation (HNR) algorithm for approximating single output functions based
on the mapping neural network existence theorem. This is useful in neural identification,for many
industrial plants are multi-input-single-output. Theoretical problems of the convergence and gener-
alization capacity of the HNR algorithm are also studied. Simulation results as well as an applica-
tion case of modeling a catalytic reform process show some interesting characteristics of this algo-
rithm, including its relatively high speed of sample learning and strong capacity of generalization
under certain circumstance
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1 Introduction

It is well known that a properly constructed multi layer feed forward neural network can
implement any continuous function defined over a compact subset of Euclidean space. Howev-
er,in many application cases,we find that the way by which we select samples and the num-
ber of hidden nodes greatly influence the property of the learned network. It is difficult to
know how to decide the network structure and sample set in order to learn a given function.
The only thing we can do is trial-and-error. In this paper,we study the mapping neural net-

[12) Jand propose an algorithm that can make a neural network learn

work existence theorem
more efficiently.

This paper is arranged as following:In part 2,we survey the general multi layer neural
netwb/rks and mapping neural network existence theorem. In part 3,we show the HNR struc-
ture and corresponding algorithm. In part 4,we offer some theorems on the convergency of
this method and discuss its generalization capacity. And then in part 5,simulation results are
given,together with some interesting features of the proposed HNR algorithm. Part 6 offers
an application case. Finally,in part 7,we draw some conclusions and discuss problems for
further research.

2 Multi Layer Neural Networks (MLN)and Mapping Neural Network Exis-
tence Theorem

An ordinary multi layer neural network is composed of many sigmoidal nodes (neurons)
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connecting among different layers. Each sigmoidal node has an identical structure,which in-
cludes ;synapse function f(x) ,activation function g(z), and output function o(x) . With the

neuron inputs IisLas=sLus connection weights W;, and threshold 8 , we often set fz) =

i}iW, + 8 ,and o(x) = 1. Thus,the neuron outputy = g(ZI,W; 4 6). A general MLN
i=1 i=1

consists of one or more hidden layers. The famous BP algorithm™solved the problem of hid-
den node training,and became widely used.

The original purpose of using neural network is to learn sampled input-output pairs in
order to memorize them,so that when given an input,the learned network can recall the cor-
rect output. In 1957, Andrei Kolmogorov published an astounding theorem concerning the
representation of arbitrary continuous functions). With this theorem and another theorem
published by D. A. Sprecher ,the mapping neural network existence theorem was proposed*.

Mapping Neural Network Existence Theorem;For any continuous function f(xy,2p0es
z,) defined over a bounded subset of a n- dimensional Euclidean space and an arbitrarily given

constant € > 0, there exist a fixed continuous increasing function $(z) ,constants N ,c;,0;(i =

1,++,N),and w;;(i =1, N,j =1, ,n) such that with the function f (g »Zzy s 2,) Writ-

ten in the form

j( e g e yT,) = ZCf¢(waj1j + (9,‘) ’
=1 j=1

we can expect max | f(xy, 2y ) — F (220,01, | < e

This means a properly constructed and well trained 3-layer neural network can imple-
ment any continuous function defined over a bounded space. Hornik, Stinchcombe, and
Whiteldid a further study and proved that $(x) can be even limited in the range of sigmoidal
functions. From then on,we started to expect to learn not only the samples,but the function
itself that generates these samples. We expect to get correct output of an untrained input,
which means strong generalization capcity of a neural network.
3 HNR Structure and HNR Algorithm

As mentioned in part 2,the mapping neural network existence theorem tells us that a p-

input-one-output function f(xy,2,,sx,) can be expressed by

2—>o00

n r
F(@rrmss e sa,) = lim > 63> jayx; + 0.
1 j=1

Or in another form,if we define

@y yzyyoesx,) = zb,-z;, (D
?

Z;p = ¢(Zaijxj + ‘9{), 1= 1,57, 2
=

then,we may find a constant N and corresponding coefficients a;;,b;,0; so that while n = N,
| Fxysxyserrsx,) — f (xyy25,000 52,0 | << e The problem is how to construct and learn the

function f (x, %, »x,) . We may notice from (1) and (2) that there are two stages to build
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function F (xyazpyeee »x,) under a given number 7 :
1) find a;;,0;, so that z;calculated by (2) are highly linear dependent on fxyszyseee,2,).
2) find &;, so that f(z), 25, ,2,) = Zb,-z,- under some criterion.

i—=1
This is the fundamental idea of HNR algorithm,which will be illustrated in detail hereafter.

3.1 HNR Network Structure
" A HNR network has three layers, which are
input layer,hidden layer and output layer. The hid-

den layer is composed of sigmoidal nodes, with ac-

tivation function g(z) = m_%)- Other nodes
are input-output equal, with g(z) = 1. A HNR
network structure is shown as Fig. 1.

3.2 HNR Algorithm

Fig. 1 HNR network structure

For easy understanding, we first review the

definition of linear dependence. With an equation

y=¢+ ibizi
i=1

and m sample pairs (y1521) s (¥2s2i2) s+ s (PusZim) si = 1, *++, n, we can define a linear rela-

-

tionship coefficient as

p(y,z) = %ZLmbH
<00 ;=1
where L00=2(y1—§)2, y= (Zyz)/m,
=1 =1
L, = Z(Zu — Ei)(yl - 5) s Ei — (Zzu)/m,i = 1, ,m,
(=1 =1

Under this definition, p = 1is the necessary and sufficient condition of P(y = ¢+ Zb,-z,-) =
i=1
1. With this theorem,we may propose HNR algorithm as follows:
1) Give byy,a;j, as initial values of b; and a;; -

2) Adjust a;; ,so that p(y,z;) = 1.
Define E = %(P — 1

then

E oy L, e S gy %
== (p 1)1100; b aa”_—é(y, NG~z

a:zf 1 S azi azi £
S D &Tizgl(zlzafijt+0i)sz’ L=1,%,m,

E j=

IE
Set Aa,-j = /\a‘T‘)

After convergence,start step 3.

3) With y, and z; ,use LS algorithm to get &; .
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4) Repeat step 2,till convergence.

We may know from following parts,that a suitable choice of b;, and samples will assure
the convergence of HNR algorithm and give HNR network strong generalization capacity.
4 Results on Convergency of HNR Algorithm
4.1 Problem Formulation

We know from the mapping neural network existence theorem that any p -input-one-
output function f(z),z € I*can be expressed by

flx). = b"¢(Ax), z € Xy X, SR (3)
Where f(x). denotes the approximation value of f(x) within precision ¢ ,and
b =[b,byy,8,1", x = [x1,2555x,,1]",
an ay a0
A= “-“ e o ?Zﬁ 0_2 v X, is the definition domain,
Ay Ay v an 0,
Therefore,we may construct a HNR network for learning function (3) as
F@ =82, z@ =$A. D)
Our objective is to find optimal parameters A and bby HNR algorithm based on a certain set
of samples (x,,3,),{ = 1,2,-*,m, and get a solution W of the learning problem with (4).
Now ,we regard y, = f(x), as the observation value of f({)e, with precision ¢, . A solution of
problem (4) is defined as
Wy €W, WEA = (el A | fx) -0 $dx) | <ez€ X},
where X, is the sample set.
4.2 Theoretical Results

While studying a new algorithm,we mostly concern about its convergency. As to neural
networks,we still concern about its generalization capacity after training. Because these two
problems are very difficult to study,hereby,we just try to find some sufficient conditions on
the convergency of HNR algorithm and discuss its generalization capacity.

We will hold the following three assumptions throughout this paper.

C0: Sample output y,,{ = 1,2,+++,m is not chosen as a constant.

C1l: Sample input 2;,{ = 1,2,+*+,m can be {reely selected in the definition domain X, .

C2: Residual of equation (4) & under randomly selected sample 2\ — 7,/ =1,2,*,m can
be treated as white noise.

Theorem 1 In HNR algorithm,under assumption C0,if 4;,/ =1,2,+*+,n1is not a solution

of equation

L., ALy AL
dy  dan T |1y
ay, Az Ay -Z =0, 5
Ly, L., L, L
--flm 3“2(p+1> ¢ 32,.;,:)_
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then the necessary and sufficient condition of step 2 of HNR algorithm converging to p = 11is
Aa;; = 0,1 =1,2,+yn,j = 1,2-,p+ 1.

Remark Obviously,we may complete the whole algorithm by assuring the convergence
of step 2. If we may obtain b;,i = 1,2, ,7n satisfying Theorem 1,the HNR algorithm may
converge to p = 1 while Aa;; = 0. We may see from (5) that this is related to the selection of
sample set,

Theorem 2 In HNR algorithm,under assumption CO and C1,if there exist sample in-
puts x,,{ = 1,2,++,m, that make each element of the left side of (5)>0,then the HNR algo-
rithm 1) converges. 2) p(k) converges to 1 at an exponent rate,i.e. 3 r € (0,1] ,such that

ok — 11| <+l p0) — 11, k=0,1,

Remark Theorem 2 together with theorem 1 offers a sufficient condition for conver-
gence of HNR algorithm. But their conditions seem to be too strict. However,from our simu-
lations in part 5 and the application case in part 6,we find these conditions can be fulfilled in
most practical cases.

Theorem 3 In HNR algorithm,under assumption C2,if step 2 converges to ¢ = 1, then
the solution of step 2 Wy € W* ,while LMS error of HNR solution (after step 3) & < e,

Remark From this theorem we know the convergence of HNR algorithm assure the
convergence of HNR network on sample set. This is critical ,because to memorize given sam-
ples is fundamental. We may notice that e— 0leads to & — 0. And we may see from latter dis-
cussion that step 3 is necessary for assuring the generalization capacity.

Theorem 4 In HNR algorithm,under assumption C1 and C2,if 1) step 2 converges to g
= 1. 2) the minimum in step 2 is unique,then A = A, and E() = b.

Remark Theorem 4 tells us that under some circumstance ,the HNR network will real-
ly converge to the function it learns. Of course,these conditions are related to the sample set
fed to HNR network and can be treated as guidances of sample selection.

Using above theorems,we may explain some widely used experience for network struc-
ture decision. 1) With a given set of samples,the more hidden nodes,the weaker the general-
ization capacity. We know with a given set of samples,more hidden nodes means more mini-
ma in HNR step 2. So the second premise of theorem 4 becomes difficult to meet,which leads
to weaker generalization capacity. We also know , this rule is not always correct. For example,
if the sample number is too small,no matter how we adjust the network structure ,we cannot
get high performance generalization. Theorem 4 can also explain this,for assumption C0 and
its first premise are related to the sample set. Only when the network together with its sam-
ples fulfills all the assumptions of theorem 4 can it be generalized. 2) With a given function,
the more the hidden nodes (with adequate samples) ,the stronger the generalization capacity.
This can be obviously deducted from Theroem 3. More hidden nodes and samples means
smaller e, which leads to smaller ¢,

S Simulation Results
In order to test the performance of HNR algorithm, we did various simulation experi-

Mments, For easy demonstration with curves,all test examples hereby use one-input-one-out-
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put functions. With these simulations ,we show some interesting features of HNR algrithm.

5.1 High Learning Speed
The error back propagation algorithm consumes a great deal of computing time!®, In

HNR algorithm,we use direct ,not recursive ,LS method to get parameter b; at step 3. There-
fore,we only search optimal a;in the first layer,not through all the layers like BP algorithm.
Thus , the learning speed is greatly improved. Table 1 shows the convergence iterations of BP
and HNR algorithm in learning f(z) = z,x € [0,1],/(x) = z*,x € [0,1],f(x) =
sin(2rz),x € [0,1] and f(x) = 1/2.5x + In(2.52),= € [0.2,1]. It must be pointed out
that in learning f(z) = sin(2mx) , we have to set hidden node number to 10,instead of 9 with
HNR,for the convergence of BP algorithm. We may notice from Table 1 that the convergence
iterations are enormously reduced by HNR algorithm.

Table 1 Convergence speed comparison of BP and HNR

S x z? sin(27x) 1/2.5x + In(2. 5x)

BP 30960(1,4,1) 709(1,7,1) 5693(1,10,1) 91]4(1,9,1_)
HNR 14(1,4,1D 13(1,7,1) 16(1,9,1) 18(1,9,1)
Error 0. 001 0. 01 0.01 0.03

5.2 Strong Generalization Capacity

We know the generalization capacity of neural network trained by BP algorithm is often
poor. For example,if we want to train a BP network to implement f(z) = z,z € [— 1,1],
and just offer samples on the interval[0,1],the trained network can never have good perfor-

mance on the interval [ —1,07]. This is shown in Fig. 2(a). (solid line for f(x) and dashed

line for f (x)). From Fig. 2(b),we may observe HNR network’s strong generalization capac-
ity with the identical sample set. In learning function f(z) = x*, and many other functions,
we get simliar results, And we also find,with hidden node number increasing,the generaliza-
tion capacity of the trained HNR network becomes stronger. The results of learning f(x) =
z,z € [0,0. 97 with different hidden node number and generating it to the interval[ —1,1]
are shown in Fig. 3 and Fig. 4.

fx) F(x)

—1 1 L x =1 : _ i -
-1 ¢} 1 —1 0 1
(a) Result of BP learning (b) Result of HNR learning

Fig. 2 Generalization ability of BP and HNR network

© Application Case

After composing the HNR algorithm ,we use it in the prediction of aromatic hydrocarbon
content in a catalytic reform process. The input variables here are temperature,pressure,ve-
locity ,ratio of H, over hydrocarbon,density of oil,and quality of oil. In an oil refining plant,
operators should constantly adjust the operating parameters for resisting the fluctuation of

input oil quality to assure stable aromatic hydrocarbon content of output oil. Therefore,it is
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Sf(x)
1
0.5
| ! z 0 St
—1 0 1 —1 0 1
Fig. 3 HNR generalization; 8 hidden nodes Fig. 4 HNR generalization: 14 hidden nodes
with 9 samples with 17 samples

very important to predict aromatic hydrocarbon content under a certain condition. One of our
task is to use a HNR network to accomplish this task. We use 20 samples selecting from the
roperation data of September and October 1993 to train HNR network,it converges after 384
iterations to the precision of 0. 01. While using BP algorithm to train with the same sample
set,we get convergence after 76995 iterations to the same precision. The predicting and test-
ing values of aromatic hydrocarbon content of 18 practical operation days in December 1993
and January 1994 are listed in Table 2. We may notice they are very similar to one another.

Table 2 Prediction of content of aromatic hydrocarbon

Testing 52.88 51.49 55.48 53.78 55.64 52.00 53.44 53.76 55.40
Predicting 52.97 49.07 52.23 49.77 51.73 52.41 52.97 53.27 54.60
Testing 52.00 51.93 52.21 52.38 46.91 46.71 52.44 49.46 53.31
Predicting 51.85 51.74 52.04 52.61 48.67 46.61 51.56 49.48 52,92

7 Conclusion

We have discussed the structure, algorithm and convergence property of HNR algo-
rithm,and also observed many advantages of this algorithm over old ones,especially over the
widely used BP algorithm. However ,there are still many problems left to be probed further.
Although we have observed some interesting features about the generalization capacity of the
algorithm,the discussion of this generalization capacity is not enough at present time. There-
fore,the properties of this algorithm should be given more study and be tested by more prac-

tical applications.
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