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New Necessary and Sufficient Condition for
the Stability of Symmetric Intérval Matrices
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Abstract; In this present paper the Hurwitz stability of symmetfic interval matrices is studied
and a simple necessary and sufficient condition is given. Additionally, the stability of linear time-
varying interval matrices and nonlinear time-varying interval matrices is also studied.
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Notation R: real-number field; = : a vector; x = (&,,2;,+*,2,)7; 27, transpose of
vector 234, (A) ith eigenvalue of matrix A ; sgn (s;) s, is a scalar,and sgn (s;) = 1if s, > 0
sgn(s;) = 0 if 5; = O;sgn(s;) =— 1 if 5, << 0; sgn (s) where s € R"*!,sgn(s) = (sgn(s,),
sgn(s,),+,sgns, 7.

1 Introduction and Definition
Consider interval matrices
G[B,C]={A|B< ALY,
and linear time-varying interval matrices
GWI[B,C]l={A®|B<K< AW < C},
and nonlinear time-varying interval matrices
G(z,0)[B,C] = {A(x,) | B< A(x,t) << C}.
The vertices set of G[B,C],G()[B,C] and G(x,t)[B,C]is H[B,C].
H[B,C] = {AlA = (a;uxnrai; = b;; 01 ¢;j}
(Where A = (a;)uxns B = (0;)15nsC = (€;p)uxn € R A@) = (a;;(2))xns Al ,8) = (a;;(x,
) uxa)
v Definition 1.1 Interval matrices G[ B,C] is said to be Hurwitz stable if and only if for
any A € G[B,C], Re L(A) <0, i=1,2,,m.

Definition 1.2 Linear time-varying interval matrices G(z)[B,C] is said to be stable,if
for any A(#) € G()[B,C], the system

() = A@®)z (@) (1. D
is asymptotic stable.

Definition 1.3 Nonlinear time-varying interval matrices G(x,2)[B,C]is said to be sta-
ble,if for any A(x,t) € G(:c,t)[B,C] ,the system

z(t) = Alx,D)z (@) 1.2
is global asymptotic stable.
U
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In 1983, Bailas Proposed a sufficient and necessary condition for Hurwitz stability of in-
terval matrices[, by Barmish, Hollot , William raised examples showing that the result of
Bailas was incorrect (see[2],[3D). Before long,Shi Z. C. and Gao W. B. 13, Jiang C. L. 057, M.
Mansour™,Soh,C. B. I revised the result of paper [1],and proposed the necessary and suf-
ficient condition for Hurwitz stability of symmetric interval matrices respectively in arti-
clest*~7],

The main result of paper[4~7]is. G[B,C]is Hurwitz stable if and only if H[B,C]is
Hurwitz stable. The main weakness of this result is that the calculation process is especially
complex as for n X » interval matrices,need to test stability of 2"“*V/2 matrices of n X 7 or.
der. For example,to verify stability of 3X 3 symmetric interval matrices, the stability of 64
matrices of 3X3 order should be tested. Therefore, this result is difficult to be appiled.

In this paper,for asymmetric interval matrices G[B,C] , we will give a simpler result.
With our method,to verify Hurwitz stability of G[B,C7 ,it needs only to test 2! matrices.
With regard to 3X 3 interval matrices , we need only to test the stability of 4 matrices of 3 3
order. We will prove this result in the following section. Additionally, the stability of linear
time-varying interval matrices G [B,C] and nonlinear time-varying interval matrices Gz,
8)[B,C]is also discussed.

2 Result and Proof
Letx € R" ,consider the matrix
sgn{(x))sgn(x,) sng(x,)sgn(ax,) oo sgn(x;)sgn(x,)

sgn () sgn (z) — sgn{(x,)sgn(x,) sgn(x;)sgn(z,) -« sgn (xy)sgn(x,)
sgn(x,)sgn(x,) sgn(x,)sgn(x,) o sgn(x,)sgn(x,)
Let
sgn(R") = {sgn(x)Tsgn(z) |z € Rz 2p00z, 5 0.
Obviously ,any S = (iduxa € sgn(R") satisfies the following properties ;
Ds;=1or— 1,
2) S'is a symmetric matrix,
Definition mapping ,
L.S— L(S)
for any S = (5,),x, € sgn(R"),L(S) = (4;)),v., where
lij:{c,-j, as s, == 1;
— by, as s, =-—1
for convenience,we denote
LLB,C]l = L(sgn(R")) =, {L(S)|S = (5,0, € sgn(R")}.
[b1sen] by ’CIZ]] ’
»then
[52190213 [6225¢2,]

¢ ¢ ¢ — b
L[B,C] :{l: 1 12]’[ 11 12]}‘
Ca Cpp — by, Co

For example:let G[B,C] = [
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S
Theorem 2.1 The symmetric interval matrices G[LB,C]is Hurwitz stable,if and only if

I [_B,C] is Hurwitz stable.
proof First,suppose L[B,C7is Hurwits stable,for any A € G[B,C], considering sys-

tem '
z = Az 2. 1)
Let V(x) = 2Tx,we denote (|z[DT = (lz; [, |z2]seers |2,] )T, then
), ,
= 20" Ax
sgn(x)sgn(x)a,, sgnlxpsgn(ayda; - sgn(x)sgn(x,)ay,
— 2(|zDT sgn(z,)sgn(x)a, sgn(a)sgn(xy)as -« sgnlx,)sgn(x,)a,, b
sgn(x,)sgn(x)a, Sgn(x,,)sgﬁ(xz)a,lz e sgn(z,)sgn(z,)a,,
since

sgn(x)sgn(x))a; < c;, when sgn(z)sgn(zy) = 1;
sgn(z)sgn(x)a; <— by, when sgn(z)sgn(x) =— 1.
Therefore ,for any x € R"(z,z,°+x, 7 0) ,there exists L(S) € L[B,C](S € sgn (R™)), such
that
av ()
de

If for any x € R" ,there existi,j(i,j = 1,2, ,n) such that sgn( x;)sgn(x;) = 0, then,

|<zA1)<2(|-Tf)TL(S)(lI‘). 2.2

we have sgn (x;) = 0 or sgn(z;) = 0, then z; = 0 or x; = 0, if we suppose z; = 0 ythen for
any 0L j<<n ‘
sng(x)sgnixay | || ;1 = cyla || 2] =— byla; | 2;] = 0.

Therefore , there exists L(S) € L[B,C](S € sgn(R")) such that (2. 2) is satisfied. So
(2. 2) is valid in this case.

Since L(S) is a symmetric matrix,and L(S) is Hurwitz stable,so (2. 1) asymptotic sta-
ble. v

In other hand,suppose G[B,C]is Hurwitz stable,for any L € L[B,C] ,there exist A =
(@;)sn € H[B,Cl and y = (y1,3z5°*»3.)" € R",such that L = (sgn(y,)sgn{(y;)a;;)ux»»80

2T La= (sgn(y,)ax,,sgn(y;)ay,,sgn(y,)z,) Alsgn(y)x;,sgn(y,)xz, e ssgn(y)x,)T
= 2TAz '
since L, A are symmetric matrices,from above formula,we have: A is asymptotic stable im-
plying L is Hurwitz stable.

Remark 2.1 Since the cardinal number of the set sgn(R") equals 2" ',so L[B,C'] only
has 2"~ matrices. With our result,to test the stability of G[B,C] we need only to verify the
stability of 2""! matrices in L[B,C] . However,according "to the results given by Shi Zhi-
cheng and Gao Weibin, Jiang Chongli®!, M. Mansour™ and Soh'"J,to test the stability of

G[B,C] we need to verify the stability of 2"“*+V/? matrices. It is obvious that our results are
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simpler than the previous.

By the same method as proof of Theorem g, 1y we can prove the foliowing results.

Theorem 2.2 The symmetric [iney, tme-varying interval matrices G(¢)[ B »Cis stable,
if and only if L[B,C]is Hurwity stable,

Theorem 2.3  The symmetric nonlinear time-varying interval matrices G(x,0)[B,CTis
stable,if and only if L[B,C7is Hurwit, stable. .

For general nonlinear time-varying interval matrices G(z,)[B,C] , we have the follow-
ing theorem. ‘

Theorem 2.4 If for any matrices I, € L[B,C],LT + L is negative definition, then non-
linear time-varying interval matrices G(:c,t)[B,C] is stable.

Proof  For any A(z,s) S G(x,t)[B,C], consider the following nonlinear system

() = Alx,t)2(). (2.3)

Let V(z) = 27, by the same way as proof of theorem 2. 1,we know that for any z €

R", there exist matrices I € L[B,C] ,such that

dlfi(tx)!(z.s) <2(!$I)TL(!1‘I) <Amax(LT+L)(fx])T(fxf) — Amax(LT“}—L).Z‘TJJ.

dV (z)

If the condition of this theorem is satisfied , then ~dr e is negative definition. This

complete proof of this theorem.

Remark 2.2 Since G[B,C7 and G@®[B,C] are subsets of G(z,0)[B,C], so,if we re-
place G(z,t)[B,C] with G[B,C] or G@®[B,C] ,the result of Theorem 2. 4 is also valid. -
3 Examples

Example 3, 1 Consider

[bn o L61 21z [61 2€15 ]
G[B9C] = [bZI »Ca1 ] [522 3€22 ] [523 2|,
[631’031] [532 ’632] [bss ’Css],

Since
111 1 -1 -1 1 1 —1 1 —1 1
sgn(R*) =<7 1y,]—1 1 L1 g —1l,|—1 1 — 15
1 1 1 —1 1 1 —1 —1 1 1 —1 1
S0 ‘ .
Ciy €y €y ‘n —by, —b, Cu ¢ —by o —by ¢y

LEB’sz Ca1 Cap Cpzf, —by, Cao € |s| cp Coz by, —by, Can by, [

31 C3p Cay ~by g Cas by ~—bsy ¢y €1 —byy oy
Subpose
—6 —2 1 -4 1 1.9
O B=|—2 _g —2, C=]1 —y4 1.9,

1 —2 —5 1.9 1.9 — 4
then -
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—4 1 1.9 —4 2 ~—1 —4 1 —1 —4 2 1.9
L(B,C]= 1 —4 1.9],1 2 —4 19|, 1 —4 2 |,|"2 —4 2
1.9 1.9 — 4 —1 1.9 —4 —1 2 —4 1.9 2 —4

Since L[B,C]is Hurwitz stable,from Theorem 2. 1,we can declare G[B,C] is Hurwitz
stable.

Examples 3.2 Consider system

[ilﬁ)}__(-4-+~ﬁn(x-+t) 2 + cos(x — t) [zlu>} a1
@] | 24 coste—1)  —5+sinlz + )/ (@] '
Obviously,

— 4 4 sinx +2) 2+w*$_”)66uwﬁi_&mﬁ] [1,3] y

2 4 cos(x — t) — 5 < sin(x + ¢) [1,3] [—6,—4]

from Theorem 2. 3,we can declare that system (3. 1) is global asymptotic stable.
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