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Abstract; The robustness of absolute stability of Lurie system with multiple nonlinearities
and structured linear uncertainties is considered. A unified criterion is obtained for robust absolute
stability analysis of the nonlinear system in the presence of parametric uncertainties and unmodeled
dynamics. The criterion includes multivariable Popov criterion and the mixed ¢ upper bound as spe-
cial cases. An efficient algorithm based upon Rosenbrock’s method and interior-point method is de-
veloped for computing the present criterion. An example is given to illustrate the application of the
obtained result to the problem of analysis of worst-case H.. performance of nonlinear control sys-
tems with structured parametric and dynamic uncertainties.
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1 Introduction

The absolute stability theory seems to be the first approach to stability analysis of un-

certain systems. It was assumed in this theory that the linear part of the system is fixed,but
the nonlinear part involves some sector-bounded uncertainty. Both Lyapunov function meth-
ods" and input-output analysis methods have been developed to establish absolute stability
criteria. One of the most important results in this field is V. M. Popov’s criterion™!, which
was later extended to systems with multiple nonlinearities by Jury and Lee™,Popov!®.

It is of interest to extend absolute stability criteria for the case while the linear part of
the system includes also some uncertainty. First contributions on robustness analysis of Lurie
system with parameter uncertainty can be found in the pioneering work such as [6] and [7].
Recently,simulated by the great progress in robust stability analysis for linear systems,this
problem has been studied by many authors along the line of Kharitonov’s theorem™, Some
extreme point results for robust absolute stability were obtained with the aid of the relation-
ship between strictly positive realness property of rational functions and Hurwitz stability of

polynomials with complex coefficients®®**1, Unfortunately, it seems to be difficult to apply

these results to multivariable systems with both parametric uncertainty and unmodeled dy-
Namics,

e
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In this paper we treat multiple nonlinearities ,parameter uncertainties and unmodeled dy-
namics in a unified framework. The main idea of this work is that if we extend constant ma-
trices D,Q in multivariable Popov multiplier D + jwQ to frequency-dependent ones, then
Popov criterion gives an upper bound for robust stability of systems with parameter uncer-
tainties and unmodeled dynamics. We prove that these two kinds of multipliers (multiplers
with constant and frequency-dependent matrices) can be unified in one stability criterion.
This unified criterion can be used not only for determining stability bounds in the presence of
nonlinearities ,uncertain parameters and unmodeled dynamics,but also for analyzing H.. per-
formance of uncertain Lurie system.

Some other recent work related to the above problem should be metioned. In [11] the
multivariable Popov criterion was interpreted in the sence of parameter-dependent Lyapunov
functions and applied to robust stability analysis for constant real parameter uncertainty.
Note that Popov criterion may be very conservative in this case since it looks upon parameter
uncertainties as nonlinearities. Later, a generalized Popov multiplier framework was deve-

t5~1land connected to the mixed y upper bound of Fan et

loped by using different methods
al. 1, The advantage of this approach is that a standard p- synthesis problem can be solved
in state space without D, N — K iteration in the frequency domain. But in general the stability
criteria in this framework can not be used for nonlinearities unless certain structure of multi-
pliers is set for the case of monotonic and odd monotonic nonlinearitiest'?,

In this paper we denote the complex conjugate transpose of complex matrix M by M¥ ,
and its largest singular value by o(M) . If M is Hermitian,we use A(M) to denote its largest
eigenvalue. IRHZ™ denotes the set of all n X m stable real rational transfer matrices. & ,(M,
A) and &, (M, A) denote lower and upper linear fractional transformations (LFTs) of matri-
ces M and Arespectively,i. e.

F (ML) = My, + M,AU0 — MypA) "M,
F (M, A) = My, -+ M AU — M A7 IM,.
2 Main Result
2.1 Unified Robust Absolute Stability Criterion
Denote the matrix of memoryless continuous nonlinear funtions by
F(v) = diag[ fi(v)) s+ fiCvi) ]y (1)
where f;(v;)’s, without loss of generality,are assumed to be subject to the following sector
condition ; »
0w fi(w) << 20, f(0) =0, 2
and the matrix of parametric and dynamic uncertainties by A(s) € BA(s) C ¥(s), where
XGs) = {AG) = diaglaLy, o180 L s A1)y A 1 (9]

8 € R4, 4(8) € RH 407k 10}, (3)
BA(s) = {A(s) € X(s):0(Aw)) <1,V » € R}. 4)

Then a multivariable Lurie system with parametric uncertainties and unmodeled dynamics

can be formulated as in Fig. 1.
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m m

Let N: = m, + zki + Zk,,l,,4—(, YM(s) € F(v)
i=1 q=1
g NXN ) et ne
RHYY. Let M(s) be partitioned as B R LN
M, () Mp,(s) . ‘
M(s) = [ 11 12 } | M(s) |
M, (s) M,y (s) | i
| I“r_'/
where | | (M, 4)
M, (s) € RHZ*", | > A(s) |
My, (s) € RHzmX@=m) T )
Mo (s) € REZT2m Fig.1 System with multiple nonline arities
and M,,(s) € RHY m)xWN=mp and structured linear uncertainties
Denote ‘
~ [MU - MlZ(I + MZZ>71M21 MlZ - MIZ(I _'_ M22>_1MZZ] (5)
(I + My ™' M, (I + My)"' My, ’
and define some sets of matrices ‘
QH = <diag|:Q1 LAY 7Y ’IN*"%] :q; € qu,' > 0,0 = 1,2, ,m,), &
0, = {diag[]mv9Q17'"9er’Om[]:Qi = QI € Ch*tif = 1,,m,}, D
Dl: = {diag[dl9".’dm,UQIN‘mv]:di 6 k{,d,> 072 = 1929"' ’m'y}, (8)

D2~: = {diag{:lmv 7D] 9"t ?Dmy ’dm,;(ml]-k i ’dml_%»mflk _—_I :

.
b

m e Am

I‘*‘l r + [

D; € C%,D; = DI > 0,1 = 1,0 ym,ydy 1q € Rodyy 1> 0,0 = 1,000 ym, ). (9
Then robust absolute stability of the system shown in Fig. 1 can be verified by the following
criterion,which is the main contribution of this paper.

Theorem 2.1 Suppose that M(s) € RH... Then the multivariable Lurie system with
structured parametric and dynamic uncertainties,shown in Fig. 1,is robustly absolutely sta-
ble for all nonlinearities f;(v,)’s satisfying assumption (2) and all linear uncertainties A(s) €
BAC(s), if there exist Q, € @, and D, € D, such that for all ¥ € R and some w -dependent ma-
trices Q, € @, and D, € D, the following inequality holds; v '

I — (I + joQiQ)DD,M (o) D' Dyt — Dy Dy MY (o) D,Dy (I — jwQ,Q;) > 0. (10)

Proof of the theorem is given in Appendix.

Remark Using loop transformation techniquet*]

more general Lurie system with nonlin-
earities described by
kavf K oifi(0) Khipof,  [i(0) = 0, 0 ky <hyp << oo (1D
can always be transformed to the system with nonlinearities described by (2).
Remark In Theorem 2.1 some common D, and Q, are required to guarantee condition
(10) for all w € R, while D, and @, can be chosen for different frequencies @ .
2.2 Special Cases

Now we specialize the main result to systems involving only nonlinearities or linear un-

Certainties and show the connection between our criterion and some famous results.
Case 1 A(s) = 0.
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In this case the system contains only nonlinearities. It is clear that m, = m, = 0 and M =
M = M,,. By definitions (7) and (9) we have @, = D, =1, Thus Theorem 2. 1 reduces to the
following
Corollary 2.1 Suppose that M(s) € RH.. and nonlinearities f;(v;)’s satisfy assumption
(2). Then the system interconnected by M(s) with F(v) ,defined by (1),is absolutely stable
if there exist Q, € @, and D, € D, such that inequality
I — (I + jwQ)DM(jw)D7* — D' MY (jo)Dy I — Jwl) >0 (12)
holds for all @ € K.
Since D; > 0 ,inequality (12) can be rewritten as
D} — (D? + jwDQ,D)M(jw) — M"(jw) (D} — jwD, QD) > 0. (13
From the fact that the map D; X @, — D, X @, defined by (D,,Q) b (D%, D,Q,D)) is a bijec-
tion ,it follows that inequality (13) holds if and only if there exist D, € D, and D, € D,such
that A
D, — (D, + joQ)Mjw) — M" (jw)(D, — joQ)) > 0. a4
This is in fact the famous multivariable Popov criterion given in [4].
Case 2 F(v) = 0.
In this case the system contains parametric uncertainties and unmodeled dynamics. So
m, = 0,0 = (I + M)~'M and M = M,,. By definitions (6) and (8) we have D, =@, = L.
We can denote @@, simply as Q, because ©Q; € @, . In the sequel , Theorem 2. 1 reduces to the
following
Corollary 2.2 The system interconnected by M (s) with parametric and dynamic uncer-'
tainties A(s) is robustly stable,if for each @ € R there exist D, € D,,Q, € @, such that in-

equality
d —U +jQ)D,I +M(jw)) ' M(jw)D;’ —DiM* (jw) I +M" (jw)) D, (I —jQ;) >0
’ (15)
holds.

It is well known that the problem of robust stability of systems with parametric and dy-
namic uncertainties can be also handled by means of the mixed # theory™®. Using the upper
bound for mixed g proposed by Fan et al. "*1 a sufficient condition for robust stability of the
system is: .

sup inf A(DMD™'D'M"D + j;(GDMD™" — D'MYDG)) <1 (16)

wER DG
where D,G have the same definition as D,,Q, . Next proposition shows that Corollary 2. 2

gives the same robustness bound as the upper bound of mixed # proposed by Fan et al. .
Proposition 2.1 The following statements are equivalent to each other:
DI — U+ jQ)ID, I + M) 'MD;' — Dy 'M"(I + M"Y'D, — jQy) > 0,
3Q,€ Q. 3D, € Dy

2) Diné X(D,MD; Dy *MPD, + j(QD,MD;" — D;'M"D,Q)) < 1.
2t
Proof Denote M, = D,MDj"! for convenience, Then we have the following chain of

equivalence;
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I — 4+ jQ)O)D, I + M) 'MD;' — Dy *M*(I + M")™'D,(I — jQ,) >0
el — 4 jQIMpI + Mp) ™' — (I + Mp) "M — jQ) >0
e+ MHU A+ My) —MEU — jQIUT + Mp) — (I + MEYU — jQ)Mp >0
&I — MEMp + jMEQ, — jQMp >0, IQ,€ Q,, I D, € D,
An equivalent form of the last inequality is Dinf AMEMp + j(QMp— M3Q,)) <<1. Thus the

Z'QZ

proposition is proved. Q.E.D.

The proposition shows that the result of mixed g upper bound given in [18] is a special
case of our main theorem,

9.3 Computation of the Robust Abselute Stability Criterion

It is well known that Popov criterion is usually verified by using a graphic method. How-
ever »for multivariable systems this method requires certain row (column) diagonal dominant
conditions which are not always satisfied in practice. And this method does not give any sys-
tematic approach to choosing matrices D, and @, for all frequencies. Futher more,if the role of
multiplier matrices D,,Q, must be taken into consideration for each frequency as we have
shown in Theorem 2. 1,it is very difficult to apply the graphic method. Below we will show
that the criterion given by Theorem 2.1 can be verified via an optimization procedure based
on an interior-point method.

First we note that from definitions (6)~(9) it follows that D\D; = D,D,,Q,Q, = Q,Q:,
D\Q, = Q,D,and Q,D, = D,Q, . Using the commutativity shown above the condition (10) of
Theorem 2.1 can be restated as follows:

DiD: — (D?D% + jwD,Q,D,D,Q,D,)M(jw) — M"(jw)
« (DiD} — jwD,Q,D,D,:Q:D)) >0, Y w€R, an
for some D, € D,,Q, € @, and w- dependent matrices D, € D,and Q, € Q,. Since the maps D,
X @; — D; X @Q; defined by (D;,Q)) |> (D?,DQ,D)),i = 1,2, are bijections,inequality (17)
holds if and only if there exist some D, € D,Q, € @, and - dependent matrices D, € D, and
Q, € @, such that
D\D, — (D\D; + joQiQu) M (jw) — M" (jo)(D;D; — jo,Q) >0, ¥ w € R.  (18)
Define
T(D,,Qi,@) = inf A(D\D, + joQiQ)M(jw) + M (jw) (D;Dy — jeQ) — DiD),

22
as
then inequality (18) holds if and only if there exist D, € D, and Q, € @, such that
i‘égT(D‘ sQn @) < 0. (20)
By definitions of D, and Q, they can be written as D, = diag{ D,;,1],Q, = diag[Q,,,/]. And
D,1,Q;; can be determined by the absolute stability criterion for the nominal Lurie system (.
e. ,Lurie system without linear parametric and dynamic uncertainties). Using Corollary 2.1
we have

(Dll ’Qll) =arg min SU%X((DH +](I)QU)M(](I)) +MH(jw)(D11 ’“'].CUQH) —'Du) (21)

Dyp2@Qyy @ €F

where M = M,; denotes the transfer matrix of the linear part of the nominal Lurie system. It
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is easy to see that this optimization problem is convex with respect to @y and D,, . However,

it may be very difficult to calculate derivatives éﬁ’fﬁ which give the necessary conditions
1 O

for a solution to (21). To solve this problem we can use,for example , Rosenbrock’s method
which is directly based on function valuest*,
Finally,to verify inequality (20) we need to calculate

min  A((D.D, + joQ Q) M(jw) + M" (jw)(D,D, — joQ,Q)) — D\Dy)  (22)

Q,€0,.D,ED,
for given D,,Q, and each @€ R. Note that the optimization problem defined by (22) is also
convex with respect to Qand D, ,and can be solved by some standard algorithm,e. g. ,interi-
or-point algorithmt.
3  Example

In this section we will give an example to illustrate the application of the main result to
analysis of the worst-case H., performance of multivariable Lurie system with structured real
parameter uncertainty.

Assume that the system is described by a state-space model:
x = (A + B,ACyx + Byu + Byw,

y = Clx’

(23
z = Cyx,
u = f(y).

Here z is the state vector of the system. z,y,w,u« denote ,respectively,the controlled output,
measured output,disturbance ,and control variables. w € &5 A,B;,C;yi,j=1,2,3are given
matrices with appropriate dimensions. A" = diag[d7, - ,51;,’_] 0 € R, |67 < 1. f(y) =
[fi(y)seers S (yu)]" is the vector of continuous nonlinear functions satisfying sector-
bounded condition (2). Our goal is to verify robust He, performance of the system in the pres-
ence of nonlinearities and parameter uncertainty,i. e. ,verify whether the inequality

T T
maXJ | 2CA", f(y),0) || de < }’L || zo(e) || de

&L f(nY 0

holds for all T > 0,w € &,[0,T], where 7 is a constant value which describes the desired

performance level. If we denote C,x by y,,AC,x by u,, then system (23) can be rewritten as

follows .
& = Az + B + By, + Byw, Fv)
y = Cux, _ A
y, = sz’ Y u
y (24)
z = Cyx, P(s)
B T 4
u:f(y)9 . i §
V- —_—
u, = A&y, L= - | :
‘ e W A(S) o
The input-output model of the system is Lo
shown in Fig. 2. In the system y = [ v, 1tu Fig. 2 Worst-case H.. performance of un-
-~ [u u,,]T LEF () = daig[ f1(31) s+, certain multivariable Lurie system
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fvu.< ymu)] , and |

P(s) =C(I — A)7'B, (25)
where B=[B, B, B;],C=[C, C, C,]".According to the Robust Performance Theo-
remf”] we know that the worst-case H.. performance problem of the system can be treated as
a robust stability problem of the system with virtual dynamic uncertainty 4° (Fig. 2). So we
can transform the system to the standard form shown in Fig. 1 with 4 = diag[ &7, e+, 0, ,A°]
€ BA and M(s) = diag[1,7"']P(s). Take

—5 4 0 CT05 1 0 0 1
A= |—1 —8 0.4|,B, =003 0.1/,B,=1[0.3 1 |,B;=10 [,
o 2 —9 0 0 1 0.5 0.3

0.1 0 0.1 0.2 1 0O ;
C1: [ },sz {: }, Ca):: [1 0.2 O:|.
0 0 1 0 3 0

Using the computation method developed in Section 2 we can verify that sup?'(D;,Q;,®)

weR

==— 0. 009 < 0 for D, = diag[40.0,1.0],Q, = diag[2.1,0.1],7 = 0. 285. So we have

m;li: | 2CA, f(y),e) || de < 0. ZSSJ: lw@ lde, YT >0, Vwé€ &,00,T].

A" Fn
4  Conclusion

The main result of this paper is the robust absolute stability criterion given by The'orem4
2.1 for multivariable Lurie system with structured parametric and dynamic uncertainties. In
this criterion the classical Popov multiplier was extended to the form of D\ D, + jwQ,Q, where
D, ,Q, are independent of frequency w but D,,Q; should be chosen for each irequency. It was
shown that the criterion can be verified via an optimization procedure based on Rosenbrock’s
and interior-point method. An example was given to illustrate how to apply the obtained re-
sult to the problem of worst-case H., performance of uncertain Lurie system with multiple

nonlinearities.
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Appendix Proof of the Main Theorem
Introduce the following definitions:
o1 = diag[Arsees 1Bun 25 € Ci = Lo sorBura € Chu g = 1y el s G
BA, = {A€E XC;E(A)él}, C
D. = {diag{dis s, ,d,,,v+1Ik,,,vH yoor ’d"'v+"’r+”‘c1k,,.v+mr+m[]

0<d.-€~R,i=1,---,mv+m,+mc}. (

Comparing these matrix sets with ones defined in Section 9 we have X(5) T Xe ,BA(G) C BA° ,D,C D,D:C

The following lemma can be derived from straightforward operation based on the definition of LFT

Lemma A.1 HI— M, —M,4 and I — Mpdlare nonsingular square matrices ,then the following
lities hold:

D (A= My M,A—D=U—F ,(M,A))“‘.?,(M,A);

N MM, A—D =~ L9/7,‘(M,A))”137,,(M,A).

The following result was first presented by Redheffer™.

Lemma A.2 Let M € CV*¥. 1 there exists D = diag[ D1 ,D;,] € Dsuch that s(DMD™) <1,
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) maxa (D, &, (M,A) D) <1;

ac BA

i) maxo(DpF ,(M,A) Dy < 1.

A€ BA

Next lemma can be regarded as a reformulation of the result of Anderson®?,
Lemma A.3 Suppose G(jw) € C"*, then for any @ > 0 and any @ € R, the following two statements

are equivalent to each other:
D e((Gjw) — a)(G(jw) + ad7!) < 1,
i) GGw) + G (jw) > 0.
According to Popov criterion™ (Corollary 2.1) the system shown in Fig. 1 is absolutely stable if
) F (M, A) € RH., for all A(s) € BA(), i.e.,
det(] — My (Go)AG®)) 540, Y AE BA(jw), Y wé&R; (A1)
ii) there exist some Q, = diag[Q,, ,IN_,,,y] € @, and D, = diag[ D), ’IN'“'%] € D, such that for all A(s)
€ BA(s) and all @ € R the following inequality holds
1 — (I + joR)D,F (M(jo),A(jw)) Dyt — D' F (M (jw) ,A(jw)) Dy — jeQuy) > 0.
(A5)
To simplify the statement of proof of Theorem 2. 1 we first prove the following proposi-
tion. _
Proposition A. 1 Write D, € D,and Q, € @; as diag [I,,,v,Dn], and diag[l,,,v,Qn] respectively. Let

& = (DpdD5' + DU + jQ27 — 1, (A6)
M= + joiQ)D,MD;*, (A

then
)& € BA for all A € BA(jo),D, € D;,Q; € @y
i) F(d— MM, E) = d — U + jo)F  (M,ANT U + joy)F (M, 4).
Proof i) It is evident that A°is a block-diagonal matrix. Denote its ith element in diagonal by 4; . While i
> m, we have 5(4) = a((d,8di + DU + j0) — D = a(4) < 1.
While i << m, we have 4, = (DD + DU+ jQ) P — I = (& + DU +QQHIU — jQ)— 1. So
we get
(A= (& + DU+ QAN U — jQ) — DS + DU + QXU +QQIH™ — 1))
=3+ DU+ QAN =200+ DU+ QDT+ DL
Thus conclusion i) of Proposition A. 1 is proved.
ii) According to Lemma A.1 we have
F(d — M)y M,A) = d — (M8 '\ & (M,A!),
where '
A! = (DpdDi! + DU + joRy) ™
Substituting Q, = diag[Q,,,1],Q, = diag[],Q;; Jand D, = diag[I,D,,]into (A7) we get
.  + jeQu)M, A -+ jeR,)M,,
B [(1 + jwQy) Dy M, Dyt I+ ijzz)DnMnD;g]'
Using the definition of linear fractional transformation,we get
F (M,

= +juQ)M, +U FjwQy ) My, (D AD;} +1 U A+ el
o (I — (I + joRy) Dy My, D} (D ADG +1) (I + Q) ™) (I 4 jeoy) Dy M Dy
= +jo)M, +U +joQu M (A +D U — My A7 My,
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:(1 “l”ijxl)Mll ‘JV(I +j‘”Q11)M12(A ”1"1) (I '—MZZA>W1M21 *(I “‘"ijll)Mlz
[T M) — U M) M (A DU — I +Mp) My (A +INTU +Myp) ™ Mo
Wsing the following matrix identity

(A— BCDY™ ' = A"+ A7'B(C™! — DA™'B)"'DA™',

we obtain
(M, A
— (I 4 jeQ) My + My(A+ DU — M) My, — My — M) ™ Mo
= (I 4 joQy) (M, + MpAUT — Mpd) ™My
. = (I + joQ)F (M,4).
Thus conclusion ii) of Proposition A. 1 is proved. Q.E.D.

Now we are ready to complete the proof of Theorem 2. 1.
Proof of Theorem 2.1 Suppose there exist D, € D,,Q, € @, and w -dependent matrices Dy € D,.Q, &€
@, such that
I — I + jwQ)DD,M(jw)D; Dt — DDy M* (je) DD (I — joQ,Q) >, Yo &R
By Lemma A. 3 this implies that
5 — U +j0@,Q,) DDy M o) Dy DI (I -+ jw,Q) DD M (jed Dy i) <1,V €.
Using the commutativity between Q; and D: , and extracting Dy and D', we have
(D, — (I + jewQQ,) DM (jed D7) (I + j0QQ)DM(jw)D, D) <1, Y w& R.
Writing D, as diag [Dy;,]] and using Lemma A. 2 we get

max E(Duy[((j - M)AIMaAE)DEI) <1, V w € S 9 (Ag)
ae A
and
max o(F (I — M) M, 40 <1, Yeek, (A9
&€ BA
where M is given by (A7). Let & =—T'€ BA, it follows from conclusion ii) of Lemma A. 1 that

F (U — M)"'M,0 — D= (I — F,(M,00)\F (M,0)
= (] — My) "My,
= (I — (I + jou)DypMuDi (U + j0Qy5) Dy M2 D
Denote M = (I — (I + jaQy) Dyl D)= (I 4 jQy) Doy, D3zt » then according to (A9) we have o (M) <
1. This implies that
det (] — MA)Y #£ 0, V A& € BA" (A10)
Take A = (D, AD7' + 1) + jQy) ' — 1. By con.clusion i) of Proposition A. 1 we know that A, € BA°, Sub-
det( — (I — (I + ja) Doy My D) (I + Q) Doplly D) (DypsD +D (I +jeoRe) ™ — 1)
—det (I — Dy, MDDy det(I — Dy My, D3 ) (DyyAD 1D '
— det(] — Dy (I + M) ="Mz D)~ det(I — Dy (I + M)~ M5! D) (D ADg' + D
= det(I — Dyp(I + My) 'Mz'Dp!) et (I + My) 'det(I — Mpd) # 0.
Hence det (I — M,,A) # 0, A € BA(jw) . So we have proved (AD).
Now let us back up to inequality (A8) . Take 4. = (D AD3 -+ D + jQu) "' — I . By conclusion i) of
Proposition A. 1 we have &° & BA" for all A € BAGw), D, € Dyand Q, € Q. Substituting & into (A9),it fol-
lows from conclusion ii) of Proposition A. 1 that

maxs(Dy, (I —  + Q)G (M (jw) , AT

A€ BA
o I+ joQ)F (M (jw),A(je) D) <1, Yol

Using Lemma A. 3,we have
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I — I+ joQ)DyF  (M(jw),A(jw)) D' — DI*F (M (o) ,A(jw))
. « Dy — joy) >0, Yo€R, YAEBA :
Thus we have proved (A5). And this closes the proof of Theorem 2. 1.
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