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Base Calibration for Dual Robot System

SU Jianbo

(Institute of Automation, Shanghai Jiaotong University « Shanghai, 200030, PRC)

Abstract: Calibration of the base coordinate systems of the two robot manipulators in a dual
robot system has not received enough attentions,though its importance is obvious. This paper de-
scribes a base calibration method by taking advantage of a visual sensor held by one of the manipy-
lators. This method is based on,but separated from the calibrations of the robot manipulators and
the visual sensor themselves. Moreover,the algorithm proposed estimates the rotational and trans-
lational parameters with the help of the same set of instrumental variables,thus no errors propa-
gate between them. Simulations are provided to show the properties of the mehod.
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1 Introduction , o

A dual robot system with visual or other sensors can be called a “corhpound robot sys-
tem (CRS)” since it includes much more different interrelations inside. These interrelations
between different parts of the system should be calibrated in order to build up the system
model for control. Conventionally there have been two kinds of approaches for the calibra-
tions of a CRS. One is the multi-step method. The other is the single-step method. In the ear-
ly time,since the robot calibrations and sensor calibrations have already been studied exten-
sively and many effective methods have been developed, calibrations of the CRS are often
completed in multi-step methods. The whole system is divided into several layers. Each layer
composes of several parts. Each part is calibrated by available calibration methods, which is
simple and straightforward. But this kind of methods are inherently contaminated by error
propagations from lower layers to higher ones. So the single-step methods are invented later
which integrate all parts in a CRS into a unified frame by a single model™, Error propaga-
tions can be overcome. But the system models are often nonlinear which require complex pro-
cedure for data acquisitions and parameter solutions. '

Calibration is for control. It can be shown from control that the errors from different
parts of a CRS may have different impacts on system control and system performance. This
means that those who have greater impacts on system performance should be modelled more
accurately. Furthermore, from the experience of calibration, it is shown that each part in a
CRS may have its own characteristics in its model, which requires a specially designed solu-
tion for model estimation. So it is argued that for a CRS composed of robots and visual sen-
sors ,multi-step calibration methods are more suitable,

Base calibration,which is to calibrate the relations between the base coordinate systems

of the two coordinated robots,is a peculiar and important problem in dual robot control. But
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it has not received enough attentions. Literature [27] discussed a passive base calibration pro-
cedure for a dual robot system by using a series of “peg-into-hole” operations to set up the
calibration equations as AX = XBB®* The final calibration accuracy depends on how precise-
ly the peg aligned with the hole, which were monitored and adjusted manually based on
force/torque sensory feedbacks.

In this paper,a new kind of vision-based calibration method for the base coordinate sys-
tems of a dual robot system is to be discussed. This method is implemented by the pro-
grammed shifts of one fobot with their projections on the image plane observed by the camera
fixed on the other one. Since the calibration algorithm relies on the calibrations of the robot
and sensor themselves,its accuracy is limited to that of the robot and sensor parameters.

Details of the base calibration algorithm are to be described in Section 2. Since the solu-
tion can not ensure the estimated rotation matrix to be orthonormal as required by the trans-
formations of the Cartesian coordinate systems ,if there exist noises in data measurements,an
orthonormalizing procedure is discussed in Section 3. Simulations are provided in Section 4,
followed by the conclusions.

2  Vision-Based Calibration

Consider the two manipulators of a dual robot system. A visual sensor (camera) is fixed
on one robot. This robot is from now on called “eye robot”. A luminescence diode (1.D) is ad-
hered to another robot. This robot is called “hand robot”. The LD is used to show a charac-
teristic point of the eye robot in image plane. Define a set of coordinatev systems system;

« B, : the eye robot’s base coordinate system;

« B, : the hand robot’s base coordinate system;

« C . the camera’s coordinate system;

o G . the luminescence diode’s coordinate system;
Then base calibration of the dual robot system is to determine the relations between B, and
B,.

Supposing the calibrations of the kinematics of the two manipulators ,calibrations of the
camera model and the calibrations of the relations between the camera and the base of the eye
robot have all been completed. The position of the LD with respect to the base of the hand
robot are also known since its position is selected. This means the relations between C and B,
and the relations between G and B, are available at any time during the working procedure.
Fixing the poses of the camera and LD,if the relations between the camera and the LD can be
estimated , then the relations between the base coordinate systems can be computed conse-
quently. Thus calibration of B, and B, can be transformed to determinations of the relations of
C and G at any specific poses of the two arms.

Calibration results vary with the camera and the LD located in different positions in
robots’ workspaces. Reasonable selections of the positions and poses of the cafnera and LD
should be made before the calibration procedure begins. Literature [5] discussed the division
of the workspace for robot system calibrations. Final result is often determined among candi-

dates on applications. The following sections show the estimation of the relations between C
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and G once the poses of the camera and the LD are settled down for calibration.
7.1 Preparations

Let C be a Cartesian coordinate system O,-U-V-W ,whose axes U,V are respectively par-
allel to the horizental and vertical grid lines of the camera image plane,and W =U XV, Let
G be another Cartesian coordinate system O,-X-Y-Z, whose relations with B, are known in
advance. Then the relations between C and G can be expressed as:

C =RG +T,,
where ‘R, ;x5 is defined as the rotational matrix,and ‘7', ;5 is the translational vector. ‘R, and
¢T, are the unknowns to be estimated for describing the relations between C and G .

For a line segment in the spaée with the length of L, its projection on the image plane is
of the length Z,if it parallels to the axis U ,and /,if it paralles to V . From the pinhole model of
the camera.

l, = f,L/d, .
where [, [, are respectively the weighted focal lengths by pixel scale factors in U,V direc-

{l,, = f.L/d,

tions ,and d is the depth of the line segment,which means the distance between the line seg-
ment and the camera focus.
2.2 Determination of ‘R,.

Define an instrumental coordinate system C'.0'-U'-V'-W' with its origin O’ coincided
with G's origin O, , and axes U’ ,V’'and W' parallel to C' s axes U,V and W respectively. Sup-
posing the angles between the axes X,Y,Z and the projection lines of X,Y,Z on U’'-W’ plane
are respectively a,,a, and «, and the angles between the axis U’ and the projection lines of X,
Y,Z on U'-W’ plane are respectively 3.,f, and 8, (see Fig. 1),then the rotation transforma-
tion matrix of the relations between ' and G can easily be written as the matrix functions of
the angles @; and B, (i = x,y,z). Since the pose of the instrumental coordinate system C’ is
the same as that of C, the rotation transformation matrix ‘R, from G to Cis the same as that
from G to C' ,which is;

cosa,cosf3, cosa,cosfl, cosa.cosf,
‘R, = sina, sina, sine, . (2)
cosa,sinfl, cose,sinf, cosasinf,

Let the origin O, of the hand coordinate system G shift along its axes’ directions X,Y,Z
respectively with distance L ,the shifts projections on image plane in U,V directions can be
observed as u.,v,,u,,v, and u.,v. respectively, which are known from image processing. As-
suming the variance of the depth of O, with respect to the image plane due to the shifts can be
ignored compared with the depth d itself,the following equations are straightforward from

camera pinhole model

u, = f,Lecosa,cosB./d, wv,= f,Lsine,/d,
u, = f,LcosacosP,/d, wv,= f,Lsina,/d, 3
u, = f.Leosacosf./d, wv,= f,Lsina;/d.

Substituting (1) into (3) leads to:
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u, = lcosa,cosf,, vV, = l,sina,,
u, = lcosa,cosf,, v, = lsine,, (4)
u, = lcosacosB,, v.= l,sina,.
From (4) and (2), ‘R, can be transformed to be the functions of , and Z, . So the following

paragraphs are devoted to the solutions of , and Z,.
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Fig. 1 Sketch of the camera and LD coordinate systems

The relations of the angles depicted in Fig. 1 can be described as:

cos?a,cos?f, + cos’a,cos’f, + cos’ae,cos?f, = 1, (s
5
sina, + sin’a, 4 sin’a, = 1. ’
In addition,equation (1) means:
lll ]
- = Ji (6)
l'U f‘U

Combining equations (4)~(6), L, and I, can be solved out:

L= Nud+u+ul, I, =i+ v+ ol )

Substituting Eq. (7) into (2), ‘R, can then be solved out:
R, = [k by k1 (8)
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The translational transformation vector * T, relating G to C can also be determined using
the instrumental parameters /,and /,estimated above. If the position of O, observed on the im-

age plane is (#,,v,) »then the cranslational vector T, = [¢.»¢,,2.]" can be computed by:

ol S

b=l /2

b= v LG+ Loz, | OF
=Ly o,

Equations (8) and (9) show that the solutions of ‘R, and “T’,are all dependent on [, and

L., i.e. the accuracy of /,and /,affect the accuracy of ‘R and * T',simultaneously , which means "
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no error propagations exist between them.
3.4 Computations of the Base Relations

Up to here,the relations between the camera and the LD coordinate systems, ‘R, and
“T',» have been estimated. Thus the relations between the base coordinate systems, LRy, and

57T, 5 can be computed from ‘R,," T, with the help of the relations of the camera and LD

with their host robot manipulators .
5.Ry =%RSRM R,
BTy m—BRy BT, +BRT, +5 T (10
h (] & ¢ 8 ¢
where ‘R; is the rotational matrix from coordinate system j to i,and “I"; is the translational
vector. Since the relations between the robot manipulators and the camera and the LD are all
calibrated in advance,these relations are available from inner sensors.

The calibration procedures stated above are usually done several times by setting the
camera and LD at different positions in different poses in robots’ workspaces. Thus several
estimations of ‘R, and * T’y can be obtained , which mean several estimations of % R and %7y
for different sub-workspaces of the robot manipulators. Selections of the final results are due
to applications.

3 Orthonormalization of the Rotation Matrix .

Theoretically the rotation transformation matrix between Cartesian coordinate systems
must be orthonormal. But this characteristics can not be ensured by (8) for ‘R, if there exist '
system modeling errors and measurement noises. Thus an orthonormalizing procedure is ne-
cessary to adjust the three row (or column) vectors in ‘R,.

For a coordinate system whose axes are not perpendicular to each other,it is easier to
adjust two of the three axes with the remain one being the datum axis . Obviously this strate-
gy leads to less reasonable modifications compared with that of adjusting three axes simulta-
neously.

The basic idea adopted here for the axes’ adjustment is that the modifications of the ax-
es to be orthogonal must be the least. So define a cost function J;

J= =k 1P+ ek |24 Iy — & | % an
where k(i = 1,2,3) is the transpose of the i- th row vector of ‘R, , and ;¢ = 1,2,3) is the
axis vector of a Cartesian coordinate system nearest to &; . Obviously,the following equations
stand for »,( = 1,2,3) from their orthonormality ;

Xy =1y, 1Ticor; =0 12
and
rli=1, fnl®=1. 19
Substituting‘ (12) into (11) and using the Lagrangian operators to take into account the con-
straint of (13);
J=Alr =k 2+ r,— k| *+ Hrlsz—ks||2+"1ﬁ'Tz“l"\z(nrl [2—1
+ Al 7 — 1. a4

To solve out 7, and , ,minimizing the function J with respect tor,( = 1,2), and 4G = 1,
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2,3);
al al .
57_—' = 0, ;77' = 0 (15
which leads to the following nonlinear equations:
! A
r,— ky + a—(f‘—>-<—r—2)(rl X r, — k) + L, + Ay = 0,
o 2
J A
Ty T kz + (<rlai< TZ) (7”1 X ry — ks) -+ ?lrl -+ /137‘2 = 0,
2

(16)

r ey = 0,
7 ?2—1=0,
Il r 2 —1=0.

There are nine independent equations in (16) for nine unknowns (3 in7y,3 inr,, and A,,

AysA). So (16) are solvable. An iterative procedure must then be used to reach the solu-
tions.

The new orthonormalized rotation matrix for ‘Ryis [ry 7, r X 7y 1.
4  Simulations

A true experimental testpad is modelled as the simulation environment used to verify the

algorithms stated above. The relations between the camera and the eye robot base are:

0 0 1 0.5
BR,=|—1 0 0f, %T.= 0.1/,
L O —1 0 ‘ 1
and the relations between the LD and the hand robot base are:
r 0 01 0.6
BR,= | 0 1 0}, 5T,=|—0.2}
L—1 0 O 1.1
The relations between the bases of the two robots obtained by the method stated in (3] are:
- 0.9550 — 0.0296 — 0.2950 5
BRy = | 0.0298 —0.9995 0.0041 |, Ty = |—0.1
— 0.2950 — 0.0049 0. 9555 0.1

which are assumed to be the true values. And the camera’s normalized focal lengths, f, and
£, ,are set to be 1017. 3 and 979. 5 respectively ,which are the calibrated values of a camera in
our laboratory .

Let the LD move 0. 01 unitlength along its three axes respectively. The algorithms de-

scribed in section 2 give the results as:

0. 0059 0.9993 — 0.0358 - 0.0223
‘R, = |0.9531 0. 0051 0.3025 |, “T,==| 0.0250
0.3025 — 0.0359 — 0.9525 3. 6084

Thus by the Eq. (10), Ry and %T'5 can be computed:
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—0.9525 —0.0359 — 0.3025 5. 0055
%Ry = | 0.0358 ~ —0.9993  0.0060 |, AT, = |— 0.1056].
—0.3025 — 0.0052  0.9531 0.1071

It can be validated that,without measurement noises, ‘R,, thus %Ry , is orthonormal.

If the measurements of the LD positions in the image plane involve noises;then ‘R, (thus
%Rp,) may not be of orthonormality. The Gaussian white noises of the magnitude of 1% and
5% are introduced to simulate the data errors. System configurations are set the same as
above. Table 1 lists the estimated results. »

Table 1 Estimated relaﬁons of C and G with noises

1% noise 59 noise
—0.0398 0.9957 —0.0833 —0.2224 0.9743 —0.0349
‘R, 0. 9435 0. 0047 0.3313 0. 9526 0. 0037 0. 3043
0.3303 —0.0654 —0.9397 0. 2966 0.0344 —0.9290
T, —0.0221 0. 0248 3.6178 —0.0216 0. 0243 3. 6889

It is easily checked that ‘R, in Table 1 is not orthonormal in the existance of noises. So it
should be adjusted to be orthonormal with the orthonormalization procedure discussed in sec-
tion 3. Assigning each row vector of ‘R, in Table 1 to £, = 1,2,3), and solving Eq. (16) by
the Optimization Toolbox from MATLAB, ‘R, can be orthonormalized to °R,”listed in Table _
2.

Table 2 Orthonormalized °R, in Tab. 1

1% noise 59 noise
—0.0113 0.9972 —0.0734 —0.1190 0.9929 —0.0012
R 0.9436 0. 0349 0. 3292 0. 9452 0.1137 0. 3060
0.3309 —0.0655 —0.9414 0. 3040 0.0353 —0.9520

Thus %Ry, and *T's can be computed from Eq. (10) by replacing ‘R, with ‘R,” . The results
are shown in Tab. 3. From Tab. 3,it can easily be seen that the matrix BBRB,' is surely or-
thonormal,

Table 3 Estimated Ry, and *T's with noises

1% noise 5% noise
—0.9414 —0.0655 —0.3309 —0.9520 0.0353 —0. 3040
%Ry 0.0734 —0.9972 ~0.0113  0.0012  —0.9929 —0.1190
—0.3292 —0.034%  0.9436 —0.3060 —0.1137 0. 9425
PeTy  5.0334 —0.1089 0.1278  5.1015 0.0533  0.0969

An alternative is that Brlégh can firstly be computed from ‘R, instead of ‘R,”, and then ad-
just %Ry to be orthonormal with the orthonormalizing procedure. Simulations show that this
scheme leads to lower accuracy than the scheme adoped above.

5 Conclusions »

A new calibration method based on visual feedbacks has been presented for dual robot

base coordinate systems. This method is a part of a multi-step calibration method for a com-

pound robot system,which prerequires the robot calibrations and the sensor calibrations. So
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the final accuracy may be affected by error propagations. An orthonormalizing adjustment is
also given to the calibrated rotation matrix to guarantee its orthonormality,especially in the
existance of measurement noises.

It is argued that from the calibration point of view ,the model of each part in a CRS may
have its own peculiar characteristics for calibrations. Thus a specially designed calibration
method may get more accurate model. Moreover,since the calibration is for centrol. From the
control point of view ,different parts in a CRS may have different impacts on system control
and system performance. So those who have more affects on system control deserve finer cali-
brations to obtain more accurate models. All these can only be implemented by multi-step .

calibrations.
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