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Abstract: We present in this paper a quasi-infinite horizon model predictive control scheme for stable and unstable nonlin-
ear systemns subject to input and state constraints. Hard state constraints are relaxed in an optimal way to avoid infeasibility. With
an additional terminal cost in the standard finite horizon objective functional and a terminal inequality constraint, the prediction is
expanding quasi to infinity but the control profile to be determined by on-line optimization is only of finite horizon. Closed-loop
stability is guaranteed by the feasibility of the optimization problem at the very beginning.
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1 Introduction

In practice, most plants suffer constraints on inputs
and states, e. g. , actuator saturation and some states are
not allowed to exceed their limitations for a safe opera-
tion or environmental regulations. Many plants are addi-
tionally nonlinear, especially when the plant is operated
at an optimal operating point that is desired for demand-
ing economic considerations and higher product quality
specifications . Thus, control approaches developed are re-
quired to be able to handle nonlinearity and constraints.
Due to its ability to handle constraints in an explicit and
optimal way, model predictive control(MPC)has become
an attractive feedback strategy for linear or nonlinear
plants subject to constraints. Since the late 70’ s, many
MPC schemes have been suggested and found successful
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applications especially in process industry(see €. g. Ref.
[1~4]).

The MPC problem is generally formulated as solving
on-line a finite horizon open-loop optimal control prob-
lem subject to constraints. Such a finite horizon MPC
scheme does not guarantee closed-loop stability'®!.
Thus, Rawlings and Muske!® derive an MPC scheme
with infinite prediction horizon and finite control hori-
zon, in which additional terminal equality constraints are
used to force unstable modes to be zero at the end of the
control horizon. Imposing terminal equality constraints on
all states Mayne and Michalskal”! prove that MPC is able
to stabilize a class of constrained nonlinear systems. In
fact, the prediction in such an MPC scheme expands ex-
actly to infinity. In the nonlinear case, however, the exact
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satisfaction of the terminal equality constraint is very dif-
ficult, if not impossible. Thus, Mayne and Michalska!®’
replace the terminal equality constraint by a terminal in-
equality constraint such that the states at the end of a
variable horizon are on the boundary of a terminal re-
gion. They suggest a dual-mode MPC scheme with a lin-
ear state feedback controller inside the terminal region
and a predictive- controller outside the terminal region.
The closed-loop control is then completed by switching
between two controllers. Tn order to avoid this, the au-
thors of this paper introduce a terminal cost into the fi-
nite horizon objective functional®!, which bounds the
infinite horizon cost of the nonlinear plant model con-
trolled by a local linear state feedback in a terminal re-
gion. A quasi-infinite horizon MPC scheme is suggested
that guarantees closed-loop stability. Other methods to
guarantee stability for constrained MPC can also be
found in the literature. For more information see e, g.
Ref.[2,10,11].

In all approaches above, closed-loop stability requires
the feasibility of constraints. The satisfaction of input
constraints can be assured easily during the computation
of an optimal solution, while the state constraints eventu-
ally lead to infeasibility of the optimization problem.
Two approaches have been developed; The first is sug-
gested for constrained linear systemsm , where state con-
straints are removed over an early portion of the horizon,
in order to enforce them after that; in the second
method, violation of state constraints is allowed at each
time but penalized (e. g. [ 12, 13]). A comparison be-
tween both methods can be found elsewherel )

In this paper, we extend our work!®! to consider state
constraints in the quasi-infinite horizon nonlinear MPC
scheme. In order to avoid infeasibility,, hard state con-
straints are allowed to be violated at each time, but the
violation is penalized in the 2-norm. The open-loop opti-
mal control problem involves then hard input constraints,
soft state constraints and a terminal inequality constraint.
The implicit prediction horizon in the proposed controller
is quasi infinite, but the control profile to be determined
onine is only of finite horizon. It will be shown that
asymptotic stability is guaranteed by the feasibility of the
optimization problem at time ¢ = 0, if the Jacobian lin-
earization of the nonlinear system being controlled is sta-
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bilizable .
2 Control scheme
Consider multiple input plants described by the fol-
lowing nonlinear time-invariant model with state vector
x (t) € R™ and control vector u (t) € R™ , subject to
hard input and state constraints
() = f(x(2),u(£)),x(0) = xp, (1a)
u(t) € U,x(¢) € X, ¥t >0, (1b)
where it is assumed that f;R" x R™ — R" is twice con-
tinuously differentiable and w.l.o.g.£(0,0)=0,that U
C R™ is compact and convex, X C R" is connected,
and that the point (0,0) is contained in the interior of X
x U. Moreover, we consider the state feedback case.
We introduce first some notations used: For any
vector x € ", || x || denotes the 2-norm and the
weighted norm || x || p is defined by lx3%. =
x"Px, where P is a positive definite matrix. For any
Hermitian matrix A,1,,,(A) and Amin(A) denote the
largest and the smallest real parts of the eigenvalues, and
A | stands for the induced 2-norm of A . In the
framework of MPC, the open-loop optimal control prob-
lem at time ¢ with initial condition x (¢) is formulated

as
rg)ign](x(t),l;,;‘) (2a)

with .

J(x(t),u,s) =

)01y

Fa(e) % + Ils(2) %) de +

lx(t+ T5x(e),0) 112 (2b)
subject to
x = f(x,u), x(t;x(2),0) = x(¢), (3a)
ti(z-)GU,rG[t,l+Tp], (3b)
x(z5x(2),t) - s(z) € X, 2 € [4,1 4 T,], (3c)
x(t+ T5x(8),1) € Q, (3d)

where @ > 0,R > O and W > 0 denote symmetric
weighting matrices, T, is a finite prediction horizon. In
order to indicate that the predicted values need not and
will not be the same as the actual values, (this is also
true for the undisturbed case with no model-plant mis-
match, if only a finite horizon is used) , we denote the
internal variables in the controller by abar (x,u,s).
Thus,x (+;x(¢),¢) is the trajectory of (3a) driven by
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u(): Lot + Tp] —» /. Note the initial condition in

(3a) : The plant model in the controller is initialized by
the actual system states x t).

In general, the above optimization problem can only
be solved with numerical methods, especially when con-
strained nonlinear systems are considered. A time-contin-
uous input parameterization leads to an infinitely dimen-
sional optimization problem that is numerically insol-
yable. In order to get around that, minimizing (2b) sub-
ject to (3) will be done over step-shaped profiles of the
open-loop control # and the state constraint violation s,
i.e.,u( t ) =const and s(z)=const forc € [t +
5,6+ (i+1)8),i =0,1,*,N, — 1 ,where & is the

T, )
sampling time and N, = —82 . An optimal solution ( exis-

tence assumed) is denoted by u* (*3x (£)): [t,¢ +
T,] > Uands " (5x (¢)) on[z,¢ + T,]. The corre-
sponding optimal value is denoted by J* (x(z)): =
J(x(t),u*,s").According to the principle of MPC,
the discrete closed-loop control is defined by

u*(r): = u*(r;2(2)), c € [t,6+ 8], (4)
The objective functional (2b) consists of a finite horizon
standard cost to specify control performance, a terminal
cost to penalize the states at the end of the finite horizon
and a violation cost to penalize the violation of the state
constraints . The soft state constraints (3c) imply that the
hard ones in (1b) are relaxed by s (), whose weighted
2- norm will be minimized. The constraint (3d) is re-
ferred to as terminal inequality constraint and forces the
states at the end of the finite horizon T, to be in a termi-
nal region defined by .

Q:={xER I x"Px < a,a ERGL. (5)

The positive definite symmetric terminal penalty matrix
P is not a design parameter that can be chosen freely. It
should be determined in such a way that the terminal cost
lx(t+ T,;x(¢t),¢) [ bounds the infinite horizon
cost for the unconstrained nonlinear plant model con-
trolled by a local linear state feedback, if x (¢t + T, ;
x(t),0)€Q0,i.e.,

|7 2 Gsx,0 1% + 1o 130de <
13+ Tsx(0),0) 13, 4 = K. ©)

In the following, we outline a method to compute a ter-
minal penalty matrix and a terminal region off-line. More
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details can be found elsewhere!®’ . First, we linearize the

av
plant model at the origin to get A: = —*5(0,0) and B :

= 5‘5(0,0). It is assumed that

A0) the Jacobian linearized system ( A, B ) of (1a)
is stabilizable.

This assumption ensures the existence of a linear state
feedback u = Kx such that Ax: = A + BK is asymptoti-
cally stable. Then, we choose a constant « satisfying 0 <
kK < — Amm(Ag), which implies the existence of the
unique positive definite, symmetric solution of the Lya-
punov equation

(A + €I)"P + P(Ag + «I) = - Q"
with Q" = Q + K'RK.
The solution P can be used as a terminal penalty matrix.
Finally, we find a constant a € (0, % ) specifying a
neighborhood 2 of the origin in the form of (5) such
that

C0) 2 c X;Kx € U,forall x € 02,

Cl) L¢; = sup {M

A
Ly < 'c'llr“';lg(f),where $(x): = f(x,Kx) - Agx.

Remark 2.1 Since (0,0) is in the interior of X x

U and §(x) satisfies L o) |

x|
then,Q with « > 0 is not empty, if assumption AQ)

holds.

With the terminal penalty matrix P and the terminal
region (2 determined above, we have

RO) the terminal region 2 defined by (5) is invariant
for x = f(x,Kx),

R1) the infinite horizon cost for x = f(x, Kx) start-
ing from {2 is bounded above as in (6) .

Indeed, condition CO) implies that the plant model can
be thought of as unconstrained in (2. Thus, in order to
find the upper bound in the form of (6) , we differentiate
xTPx along any trajectory of x = f(x, Kx) starting
from {2 and obtain

(7)

x€ N, x = 0} meets

—~0as x| >0,

%x(t)TPx(t) —x()T(ATP + PA)x(t) +

2x ()" Pp(x(1)). (8)

Ly - || Pl

With a constant « satisfying A (P) S« <

- Amx(Ag) ,we have



316

x()"PP(x (1)) < wx(1)"Pr(s). (9)
Since P satisfies the Lyapunov equation (7), it follows
from substituting (9) into (8) that

d—dtx(t)TPx(t) <-x()TQ*x(s).  (10)

Because of Q* > 0, (10) implies that any trajectory of
x = f(x,Kx) starting from (2 stays in {2 and converges
to the origin. Recall the notation in the controller, then,
integrating (10) from ; + T, to o with initial condition
x(t+ T5x(e),0)EN gives the result (6).

Remark 2.2 Substituting (6) into (2b) leads to

win "1 (esx (0,00 13+ Ja(o) 13 +

Is() 13)dr < ming(x(0),a,5).
This way, the prediction horizon of the proposed nonlin-
ear MPC scheme expands quasi to infinity .

Remark 2.3 Condition Cl) may be very conserva-

Apin (P) .
”\P”' It is

possible that for some Systems this condition can only be

tive, due to the typically small value of

met in an extremely small terminal region. From the
above, we know that if inequality (9) is true, inequality
(10) also holds. Hence, in order to get a less conserva-
tive terminal region, we may take a different approach .
For a chosen «, we make iterations of simple optimiza-
tions!8!

maxfxTRI)(x) - kx™Px | xTPy < af, (11a)
max{d(Kx,U) | x"Pr < af, (11b)

(11¢)

by reducing « until the optimal values of (11) are non-

max!d(x,X) [ xTPx < al,

positive. If a suitable « is found in this way, it specifies
a terminal region in the form of (5), where RO) and
R1) are true.
3 Asymptotic stability

In this section, we consider the stability property of
the closed-loop system

x(1) = f(x(2),u" (1)) (12)

with the model predictive control (4) . The result is stat-
ed in the following.

Theorem 1  Suppose that

i) the nonlinear plant model (1a) has a unique solu-
tion for any piecewise continuous g (+):[0,0) > U
and any initial condition,
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ii) Assumption A0) is satisfied,

iii) the open-loop optimal control problem described
in Section 2 in feasible at time t = 0,
then, in the absence of disturbances, the closed-loop sys-
tem (12) is nominally asymptotically stable. Let D
R" denote the set of all initial states for which assump-
tion iii) is satisfied, then, D gives a region of attraction
for the closed-loop system.

Proof For x(:) =0, the optimal solution of the opti-
mization problem is u * (+;x(2)):[¢,¢ + T,]>0. Ac-
cording to (4),we have u* (*).[¢,t + & ]—>0. Since
f(0,0) =0,then x =0 is an equilibrium of the closed-
loop system.

Given any initjal state Xo€ D. According to the prin-
ciple of MPC, the optimization problem has to be solved
repeatedly , updated with new measurements at ¢ = 0,9,
28,--. In the following, we first show the feasibility of
the optimization problem at each time .

Assumed that, at time ¢ , the optimization problem
with initial condition x (¢;x(2),¢) = x(¢) is solved
optimally. A finite horizon open-loop optimal control
profile u* (+;x(¢)).[¢,1 + T,]— U drives the plant
model from x(¢) into the terminal region 2 along a fi-
nite horizon open-loop optimal state trajectory x * (-
x(t))on [¢,¢+ T, ], where the state constraints are
violated in an optimal way by s* (+5x(2)). Since x *
(t+T5x(1))EQ there is s* (t+ T,;x(1)) =0.
Note that if the optimization problem is solved numeri-
cally, that is in general the case, s * ( - 5x(2)) is step-
shaped,i, e. , only the discrete values of the state con-
straint violation are given. For the nominal system with-
out disturbances, the closed-loop state trajectory on [ ¢, ¢
+ 0] is then

x(z) = x"(v5x(2), c € [1,1 4 8]l (13)
that violates the state constraints at time ¢ + & with s (e
+0)=s5"(t+8;x(t)). At time t + &, in order to
solve the optimization problem with the new initial con-
dition x (£ + 03x(t +8),¢ + &) =x(t+6),a candi-
date control profile u(+) on [+ 8, + 0+ T, Imay be
chosen as follows:
- u*(z3x(1)), for e €[t 40,0477,
u(T)'—'{K{C(r;x(HS),HS), for r € [t+7;, 1£+0+T, ],

(14)
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The generated state trajectory on [t + &,¢t + Tp] is the
restriction of x * (*;x(¢)) to [t+8,t+ T,],i.e.
x(r5x(t +8),t +6) = x"(r3x(¢)),
t€[t+8,t+T,l. (15)
Due to the invariance of the terminal region, x * (¢ +
Tp;x(.t))G.Q implies that the state trajectory on [ ¢ +
T,,t+0 + Tp] stays in (2. Thus, the violation of the
state constraints can be described by
_ s (z52(2)), forv € [448,1+T,],
S(T)={0, forrG[t+Tp,t+8+Tp].
(16)
The input and state constraints are satisfied in (2, thus,
(14) and (16) constitute a feasible but perhaps not opti-
mal solution to the optimization problem at time ¢ + &.
This result is also true, if we assume that a feasible( not
necessarily optimal) solution to the optimization problem
at time ¢ is found. By induction, we conclude that, for the
perfect nominal system without disturbances, assumption
iii) implies the optimization problem is feasible at each
time ¢t > 0.

Now we show the non-increase of the optimal value
function, that will be used to prove stability in the sense
of Lyapunov. Due to x (¢t + T,;x (¢ +.6)’ i+ 6) =
x*(t+ T,;x(t))€ Q2 and the linear control on [ ¢ +
T,,t+08+ T,],the state trajectory x (*;x(t +3),¢ +
8)on[t+T,,t+0+T,] stays in 2 and obeys (10).
Integrating (10) from ¢ + T, to ¢t + & + T, yields then
the relationship:

Il x(t+06+ T5x(e +8),e+8)1% -
x*(e+ Tsx(e)) 13 <
t+8+Tp _
T R Gir(e 8),0 4 8) e (17)
»
Using (14) ~ (17), the open-loop objective value at
time ¢ + & can be evaluated by
J(x(e +68)) < J"(x(4)) -

[ e 1y +

la*(osx() 1%+ 1s*(e52(0)) 1 3)de.
(18)
By the principle of optimality, the optimal solution at
time ; + & will be not worse than the chosen one above.
Then, (18) becomes
T (x(t+8)) - J"(x(2)) <

MA@+ e 13, (19)

where(4),(13) and W = O are used.By Q > Oand R >
0 ,the inequality (19) implies that the value function
J* (x(t)) is not increasing (a monotonicity property) .
Thus, we define a function V (x) for the closed-loop
system (12) as V(x): = J* (x). From Lemma
A. 1" y(x) has the properties that V(0) =0, V(x)
>0 for x £0 and V(x) is continuous at x = 0.Hence,
we can take the standard argument used for example in
Ref.[15] to show that the equilibrium x = 0 is stable.
Moreover, from the monotonicity property of V(x), we

have V(x())< V(x(0)) ~ |~ Il x(2) I dr. Due
to V(x())=0 and the boundedness of V(x(0)),the

integral Jo. lxCe) |l Zth exists and is bounded . Because

of the stability of the equilibrium x = 0, the compactness
of U and the continuous differentiability of f, it is
shown®!that || x(¢) || % is uniformly continuous in ¢ on
[0, ®).It follows then from Barbalat’ s Lemmal'® that
lx(t) || =0 as ¢ = oo, Thus, the equilibrium point
x =0 of the system (12) is asymptotically stable. Note
that in the above a continuous differentiability assump-
tion on V(x) is not used. Finally, using the same argu-
ment as in Ref.[9], we can prove by contradiction that
D is invariant for the closed-loop system and hence be-
longs to the region of attraction. Q.E.D.

Remark 3.1 If the plant model is constrained sta-
bilizable, the prediction horizon T, can be chosen such
that assumption iii) is satisfied.

Remark 3.2 It is clear that (19) is also valid for
feasible solutions, as long as the optimization problem is
initialized by the shifted feasible solution from the previ-
ous step. This means that not the optimality but the feasi-
bility of the optimization problem is required for closed-
loop stability .

4 Example

We now consider the undamped systemm and assume

the control © and the state x; have to satisfy constraints

as follows:
%y =— % + u(0.5 +0.5%,), (20a)
5\'72 = X1 + u(05 . 2.0x2), (ZOb)

-1.0gu<1.0,-1.0< % < 1.0. (20c)
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This is an academic example for demonstrating the pro-
posed nonlinear MPC scheme . Some realistic case studies
can be found elsewheret').

For the implementation of the proposed quasi-infinite
horizon nonlinear MPC scheme, we need parameters ¢,
R, W, P and 2 .Following the method given in Section
2, we choose the weighting matrices for the control per-
0.2 0.0
0.0 1.0
Using the LQ technique, we get a feedback gain K =
[0.798 1.328] for the Jacobian linearized system of
(20) .From A (Ag) = - 0.53 £ 0.991, we choose ¥ =
0.5( < = A (Ag) ). Then, solving the Lyapunov equa-
tion (7) and following Remark 2.3, we obtain a terminal

formance as Q = ( ),R = 0.5,W = 0.5.

penalty matrix and a terminal region as follows such that
inequality (9) and condition CO) is satisfied:
10.5654 - 2.2067

- 2.2067 28.1390)’
Q=Ix€ER | x"Px <0.65].
The discrete closed-loop control is defined by (4).
Note that the linear state feedback gain K is not directly
used to calculate the closed-loop control. The constrained

(21)

optimization problem in Section 2 is solved with a sam-
pling period of § = 0.2 time-units. For a prediction hori-
zon of T, = 4.4 time-units, the problem is feasible at
time ¢ = 0 . Time profiles of the constrained nonlinear
system controlled by the proposed predictive controller
are shown in Fig. 1, for two initial states(solid lines and
dash-dotted lines, respectively ) . The dashed lines repre-

e e e e e e e e e e =

0 2 S 8 10 12
1/lime-units

0 3 4 3 8 10 i

(383

t/time-units
1
T
I e
= Orp 0 e T ————
—~0sf|i
iy (107 : , .
0 2 4 6 8 10 12
{ftime-units

Fig. 1 Time profiles for closed-loop system
from two initial states
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sent upper and lower bounds on the state x; . It can be
seen that the input constraint holds hard and the con-
straint on the state x; is only violated at the beginning.

It is shown that the proposed quasi-infinite horizon
nonlinear MPC scheme has computational advantages[9] .
when compared to other nonlinear MPC approaches.
Handling state constraints is however computationally
extremely expensive. Table 1 shows the comparison of e-
lapsed CPU time with and without the state constraint
(SC) , when using the same optimization routine and the
same integration algorithm with the same numerical pa-
rameters. The total simulation time is 12 time-units. It
should be pointed out that the integration step might play
an important role in on-line computation time. In order
to evaluate the objective functional and the nonlinear
constraints, an integrator is needed to solve the nonlinear
differential equations over the finite prediction horizon.
Clearly, the smaller the integration step is, the more
computation time the evaluation needs. For the results in
Table 1,a very small integration step(0.001 time-units)
was chosen, (for the sake of using a time-continuous
model) . Roughly, if the integration step doubles, only the
half of the elapsed CPU time is needed.

Table 1 Comparison of elapsed CPU time

Initial state Elapsed CPU time/s
x1(0)  x,(0) without SC  with SC
1.0 -2.0 609.32  6483.80
-1.0 2.0 482.46  6326.39
1.0 2.0 459.77  6423.23
-1.0 -2.0 425.68  6342.88

5 Conclusions

For nonlinear systems subject to input and state con-
straints, we have proposed an MPC scheme with a quasi-
infinite prediction horizon but the control profile to be
determined on-line is only of finite horizon. In order to
avoid infeasibility, the hard state constraints are soft-
ened”,i.e. ,the violation of the hard state constraints is
allowed but penalized by an inclusion in the performance
objective, with the price being a significant increase in
on-line computation time. If the Jacobian linearization of
the nonlinear system is stabilizable, a terminal penalty
matrix P can be chosen as the unique positive definite
solution of an appropriate Lyapunov equation and an in-
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variant terminal region can be computed off-line. The
closed-loop system is shown to be asymptotically stable
in the sense of Lyapunov, independent of the choice of
performance parameters Q' and R . The region of attrac-
tion is maximal in the sense that the hard state con-
straints are relaxed and that closed-loop stability requires
just the feasibility (not necessarily the optimality ) of the
posed optimization problem.
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