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Abstract; In this paper, the problem of robust sampled-data estimation for continuous systems with noise intensity uncer-
tainty is discussed by taking account of intersample behavior. The primary purpose of this study is to design discrete filters for
this kind of uncertain systems such that the estimation error variance of each state is not greater than a specified value, and
therefore the steady-state behavior of the filtering result will be satisfactory. This paper first studies the case that only the intensi-
ty of the model noise is uncertain. Then it is shown that the design method in this Ppaper is also suitable for the systems with
measurement noise intensity uncertainty . Finally, a numerical example is provided to demonstrate the usefulness and effective-

ness of the design method in this paper.
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1 Introduction

Owing to the advances in digital computers, discrete-
time estimation and control of continuous systems have
been developed and used in numerous applications. In
most treatments of sampled-data estimation, the continy-
ous-time plant is in some way discretized, and the esti-
mator for the discretized plant is designed!""?) . General-
ly, this treatment describes the behavior of the overall
system only at the sampling instants, and the intersample
behavio; is lost in the process of discretization. There-
fore, the study on sampled-data estimation involving the
intersample behavior should be placed more emphasis.

Another motivation for this paper is the recent devel-
opment of error covariance assignment (ECA) theory[3 1
In practical applications, the statistical characteristics of

Ineasurement noise are easy to obtain, but it is not true
for the system model noise. Unfortunately, the ECA
theory is not suitable to the constrained variance estima-
tion under noise intensity perturbations, since assignabil-
ity conditions of error covariance depend directly on the
intensity of model noise.

[4] and [5] study the problem of robust constrained
variance estimation for continuous and discrete systems
with model noise intensity uncertainty respectively, This
paper studies the robust sampled-data estimation problem
for continuous systems with model noise imensity Uncer-
tainty. It is also pointed out that the same approach can
be utilized (o study the case that the measurement nojse
intensity is also uncertain,

2 The discretization of the continuous
system

* This work was supported by the National Natural Science Foundation of P. R. China (69574014) .

Manuscript received Jul, 24,1997, revised Jan. 19,1998,



No.3 Robust Sampled-Data Estimation for Continuous Systems with Noise Intensity Uncertainty 321

Consider the following continuous stochastic system
and the measurement equation
i(t) = Ax(¢) + w(e), (1)
y(t) = Cx(t) + v(t)
where x () € R" is the state, y(¢) € R™ is the mea-
sured output. w(¢) and v(¢) are uncorrelated zero mean
Gaussian white noise processes with respective intensity
W =0and V > 0. It is assumed that the model noise in-
tensity varies in a certain range and its maximum value is
W,ie.,0 < W W.
Because direct sampling of signals containing white

noises is not allowed'®’, we utilize an averaging-type
ke
A/D device of the formmy(kr) A %I(k ) y(t)de,

where 7 > 0 is the sampling period. The present state
dependent discrete-time equivalent model of the continu-
ous system (1) is [2J
x((k + 1)) = Ax(kr) + w(kr), (2)
y(kr) = Cax(hr) + v, (kr) (3)
where

A A e, ¢ ate] eenge,
T 0
w (ko) & [ O u e + £)de,
1 T
vk A LTk = e + )
TJ0

(717 acee
7C‘(0Le’“5 77)1,0((11: -+ q)dqd&

and w,(kr) and v, (kr) are zero mean white noise se-
quences and

[ i) staon) = [ 7 aw,

where

J AEWeATEdE,

1 1f* T

e A GLAGT
3
F(E) é CJOeA(V‘E)dq.

By defining W, A J;eAEWeATEdE and V, A %V +
TLZJ;F(é)W/FT(E)dE, it follows from0 < W < W that
W, < W,

[
0 v’

and V, < V. and hence Wy < W,

=~

>

3 Robust sampled-data estimation
Suppose that the discrete state estimator of the system
(1) is of the form
x[k+1] = Ge[k] + Ky(kr). (4)
By denoting e4[ k] A x(kr) — x[ k], it can be derived
from (2),(3) and (4) that
ealk + 1] = Geyl k] + (A, - G - KC.)x(kr) +
' w,(kr) - Kv. (k). (5)
The augmented system of (2) and (5) is given by

xd[k + 1] = Alxd[lﬂ + Dlwd[k] (6)
where w,[ k] is a zero mean white noise process with
covariance W; = 0 and

x(kr) w,(kz')
wilall ] winal

AA[A—G KC, 2] lé[j -OK]‘

It is supposed that w(¢) and »(z) have no correlation
with the sample time state before the time 7,i.e.

E{[:d([k]: ]>] [Tkt 4 £) o™ (kye 4 e)]}=
ky < ks,

Definition 1 Consider the augmented discrete sys-

0<é <.

tem (6). The sample time estimation covariance X is
defined as
X, A lim Elag[ k)25 K]} =

{25 i) eatan)a
[Xdl Xd3]
X Xpl

It is easy to see that the sample time estimation co-
variance in Definition 1 is in essence the state covariance
of the discrete system (6) and only contains the signals
at sampling instants. If X, exists, X, satisfies the follow-
ing discrete Lyapunov equation

X; = AL XAT + D,W,DT. (7

Define ¢,(¢) A x(¢) — x(z), where x(¢) = x[ k],
kt <t < (k+1)r. We now give the definition of the
sampled-data estimation covariance.

Definition 2 The sampled-data estimation covari-
ance X; is given by

. iJ‘(Iﬂl)r -
Xsé_hl_l’q‘: = Efx (£)x7(¢)}de,
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x(t)
e, ()"

The sampled-data estimation covariance takes com-
plete account of the intersample behavior and is a more
accurate criterion of the sampled-data estimation. To this
end, the main purpose of this paper can be stated as fol-
lows: given the continuous system (1) with model noise
intensity uncertainty and the upper bound X, > O of the
sampled-data estimation covariance, seek all the discrete
estimators (4) such that the sampled-data estimation co-
variance X, > 0 satisfies X, < X,. We call this the Con-
strained Variance Robust Sampled-Data Estimation
(CVRSDE) problem.

4 The conversion of the CVRSDE prob-
lem

The following lemma shows the mathematical relation
between the sampled-data estimation covariance X, and
the sample time estimation covariance X, .

Lemma 1 Suppose that the sampled-data estimation
covariance X; > 0 exists. Then the covariance X, can be

1OV

obtained by the following equation

X, = LTI XCT ) + W) ldu ()
where 0 < u < 7 and X, is the sample time estimation

covariance and
Au
e 0
cwal o Y,
e™ -1 I

Wl(u)

W1(u)]
Wl(u) '

Ws<u>é[ Wl(u)

Wi(u) A f :eAfWeAdee.

We recognize from Lemma 1 that C,(u) and W,(u)
do not depend on G and K. Thus, the CVRSDE problem
can be solved by checking the following.

Theorem 1 Consider the system (1). For the de-
sired upper bound X, > 0 of the sampled-data estimation
covariance, X; < X, holds if the following two condi-
tions are met.

i) There exists a positive definite matrix X,; > 0 satis-
fying

X, = %J;[ CAu)X,CMu) + W,(u)]du (9)

Wiu) Wi(u)

W, (u) A [Wl(u) 7wl

where

Vol. 16

W(u) A j:eAEWeATEdf-
ii) There exists a set of matrices (G, K) satisfying
A XAT - X, + DiW,DT = 0, X, < X;. (10)
Proof We need only show that
X, < X, if X; < X,.
Subtracting (9) from (8) leads to

Xs - )_(s = %j;[cs(u)(xd - Xd)cz(u) +

W, (u) - W/s(u)]du (11)
Noting that W < W, we have W,(u) - W,(u) =

jueAE(W . W)eATEdE < 0. Therefore,
0

W,(u) - W,(u) =
[W1(u) - Wl(u) Wl(u) - W1(u) -0
Wi(u) - Wi(u) W) - Wi(u)d =
Since X; < X, it can be seen from (11) that

X %= Te - 2 enw +

W, (u) - W,(u)]du < 0.
Consequently, we have X, ~ X, < 0 or X, < X,. This
completes the proof.

It is not difficult to test that X, is unique if there exists
X, satisfying (9). The proof follows immediately from
Theorem 2 in [8].

From Theorem 1, for the given upper bound 7(5 >0,
we can transform it to the constraint X, on the sample
time estimation covariance from (9) and then determine
the set of matrices (G, K) from (10).

A

. A0 -
BydeﬁningAé[A 0] and Q A =X, -

L: W,(u)du, (9) is equivalent toj;eA“Xde’qT“du =0.

We can compute X, using the computational algorithm
provided in [8]. In what follows, we will study the ex-
istence conditions and the analytical expression of the set
of matrices (G, K) satisfying (10).
5 The design of desired estimators
Suppose that the positive definite matrix P satisfying
P < X,;. (12)

Using the matrix P, (7) can be expressed as

(Xq - P) - Ai(X; - P)AT +

P - Ay PAT - D,W,DT = 0.
It follows from Lyapunov stability theory that if Ay is
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stable and

P — A PAT - D,W,DT > 0 (13)
holds, then we have X; - P < Oand X; < P < X,.
Furthermore, if

P - A\ PAT - D,W,DT > 0 (14)
holds, (13) is automatically satisfied when 0 < W <
W. Now, the design task will be accomplished by find-
ing the set of matrices (G, K) satisfying (14) and the
stability of A,.

By defining

Adé[jr g], Bé[_ol], HA[G K],

Mé[CIT ‘0’],Dg[f Joall

we have A} = Ay + BHM and D, = D + BHJ. Thus,
(14) can be rewritten as
P - (A; + BHM)P(A, + BHM)" -
(D + BH])W,(D + BH])" > 0. (15)
By defining R A A,PM™ + DWyJ" and S A MPMT +
JW,JT, (15) is equivalent to
P - A;PA - DW,D" + RST'R" >
[(BH + RS-)TI[(BH + RS™)TI" (16)
where T is the square root of S > 0, i.e., SA TT", T
€ REn+m)x(ntm)
Assume that
P — APAY - DW,DT + RST'RT > 0. (17)
Then, we can always choose a positive definite matrix Q
satisfying
P - Q - A;PAY - DW,DT + RST'R' > 0,
{rank(P_Q_AdPAE_DTWdDT+ RS'RM)<n+m.
(18)
It can be seen that if the equation
P - Q - AJPAYy - DW,D" + RS-'R" =
[(BH + RS)TI[(BH + RS™)T]"  (19)
holds, we can obtain the inequality (13), (14), (15)
and (16). Noting that (19) is equivalent to P — A, PAT
- (Q + D;W,DT) = 0and P is positive definite, we
can conclude from Lyapunov stability theory that A, is
stable. Therefore, if (17) holds, then H to (19) is the
desired solution to the CVRSDE problem.
By defining
P - Q- APAY - DW,D" + RS'R™ = LT,

LE Ran(er)’
(19) can be reammanged as LLT = [(BH +
RS™Y)T][(BH + RS™')T]", which is equivalent to'!
(BH + RS"1)T = LU or
BH = (LU - RT™ ") T"! (20)
where U is some orthogonal matrix. There exists H satis-
fying (20), if and only if!®/(/ - BB*)(LU -
RT-")T-' = 0, or equivalently (/ — BB*)LU = (I -
BB*)RT~", which holds if and only if!*]
[(I-BB*)L][(I-BB*)L]" =
[(1 - BB*)RT-"][(I - BB*)RT-"]". (21)
By considering the definition of L and T, it follows
from (21) that
(I- BB*)(Xy - Q - AXA] -
DW,D™)(I - BB*) = 0. (22)
If there exists a solution to (20), H can be expressed
as[10]
H=B*"(LU-RT"NT'+(I-B*B)Z
(23)
where Z is arbitrary. Since I ~ B* B = 0, (23)is e-
quivalent to
H=[G Kl=B*(LU-RTT! ()
and the orthogonal matrix U can be expressed as'®!

I 01, i
UA VI[O U()]Vz, U UL = I,

(I - BB*)L = U3V},
(I - BB*)RT™T = U,3,V].

The main result of this paper is stated in the following
theorem.

Theorem 2 For the given upper bound X, > 0 of
the sampled-data estimation covariance, if there exists
Xy > Osatisfying (9) and P > 0 and Q > O satisfying
(12), (17), (18) and (22), then G and K determined
by (24) satisfy the constraint on the sampled-data esti-
mation covariance X, i.e., X, < X,, when the model
noise intensity W varies between 0 and W .

Remark We only consider the case that the model
noise intensity is uncertain above. In fact, if the mea-
surement noise intensity is also uncertain or only it is un-

certain, by defining W, A f;e"fﬁ/e“de and V, A %T/

+ iﬂl’(é) WF'(&)dé, where V is the possible maxi-

mum value of the measurement noise intensity, we can
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also obtain that W, < W, and V, < V,, and hence W, <
W, holds. The design task of the CVRSDE problem fol-
lows immediately from the design approach provided
above,
6 A numerical example
Consider the following continuous system
2(1) =—-1.70275x(¢t) + w(t),
y(t) = 0.55x(t) + v(¢),
W =038, V=018
For the sampling period ¢ = 0.3, the present state de-
pendent discrete-time equivalent model is given by x( (%
+ D) = 0.6x(kr) + w,(kr), y(kr) =
0.71779x(kr) + v, (kr) and
_ [WT 0] [0.15034 0 ]
‘“lo vITL o o315
The design task is to seek the sampled-data estimators
(4) such that the sampled-data estimation covariance X,
_ [0. 23585 0.19922

satisfies X, < X, =
0.19922 0.35501
model noise intensity W varies between 0 and W.

It follows from Theorem 1 that X, =

] while the

%j;[cs(u))?dCf(u) + W.(u)]du, where

e_1.70r275u 0
C(u) = [e_1.7oz75u i 1] ’
_ Wi(u) Wi(w)
W,(u) = [Wl(u) Wy(u)l’

W,(u) = 0.23491(1 — e3-405%0u)
According to the algorithm provided in [8], we obtain

%, - [0.23641 0. 18963 _
0.18963 0.33527
By using the design procedure in previous sections,
we have
[0.5 0 [ 0
¢ T los ot 7 T L 1]'
1 -1
H=[6 K], M= [ ]
1.15416 0

-1 o 00
oM )
1 0 0 1

Subject to the constraint (12) and the conditions (17),
(18) and (22), we can choose
0.005 0
0= | ,
0 0.012

0.22710 0.19421
~ 1019421 0.32816]°
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Consequently, we have
T 0.11989 0 ]

L=1_0.19615 0.24486
10.40756 0.02720
= 0 0.86785!°
1 0] ., [0.34114  0.94001
Vl = ], Vz = ].
[0 1 0.94001 - 0.34114

By setting Uy = 1, we obtain the first desired estimator
2[k + 1] = 0.82930%[ k] + 0.22008y (kr). The sec-
ond desired estimator £[ k + 1] = - 0.30022x[ %] +
0.44799y (kr) can be obtained by setting Uy = - 1.
7 Conclusion

This paper has extended the results of [4] and [5] to
the sampled-data case. The primary purpose is to design
the discrete estimator for the continuous system with the
noise intensity uncertainty such that the estimation error
covariance of each system state is no more than an ex-
pected value. The present design methodology is based
on Lyapunov stability theory.
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