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CONTROL THEORY AND APPLICATIONS

Time-Varying Adaptive Control of
Uncertain Dynamic Nonholonomic Systems *

Dong Wenjie and Huo Wei
{The Seventh Research Division, Beijing University of Aeronautics and Astronautics* Beijing, 100083, P. R. China)

Abstract: This paper considers the stabilization problem of the dynamic nonholonomic systems with unknown constant in-
ertia parameters. New periodic time-varying adaptive stabilizing laws are presented for a class of the systems. Unlike the feedback
laws in other papers, they are not high-gain ones. The stabilization problem of the general uncertain dynamic nonholonomic sys-
tem is also addressed, and the existence of the periodic time-varying adaptive stabilizing law is proved. Simulation results of an
exapmle show that the approach is effective.
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1 Introduction

In recent years, there has been a growing interest in
design of feedback control laws for nonholonomic sys-
tems'!) . But the literature on uncertain dynamic nonholo-
nomic system is sparse.In this paper, the point stabiliza-
tion problem of dynamic nonholonomic control systems
with unknown constant parameters is considered. New
adaptive stabilizing feedback laws for a class of the un-
certain dynamic nonholonomic system are presented . Dif-
fering from the results in [2] and [3], our controllers
can be proved to be globally stabilizing ones, that is, they
can make all positions and velocities of the closed loop
system asymptotically converge to zero. In addition, the
design parameters in our controllers are only needed to
be positive, but not large enough, so they are not high-
gain controllers. For general systems, the existence of the
adaptive time-varying stabilizing control laws is proved,
at the same time the structure of the controller is also
presented.

2 Problem statement
Consider the general mechanical system with nonholo-
nomic constraints, expressed in the following form
H(x)x + c(x,5)x + G(x) = B(x)t + J'(%)A,
(1)
J(x)x =0 (2)
[%,**,%,]7 is generalized coordinates,
H(x) is an n x n positive definite inertia matrix, C(x,

where ¥ =

x)x presents centripetal and Coriolis torques, G(x) is
the gravitational torques, B(x) is an n x r full rand in-
put transformation matrix, J(x) is an (n - m) x n full
rand matrix, 2 << m < n,r = m. A is Lagrange multi-
plier, t is control input and the superscript T denotes the
transpose. The constraints (2) is assumed to be com-
pletely nonholonomic. Also, (1) possesses following
properties: 1) H — 2C is skew-symmetric for a proper
definition of C;2) H(x)é + C(x,x)¢ + G(x) =
Y(x,x,&,6)a, where a is p-vector of inertia parame-
ters, Y(x,x,&,£) is a known matrix of x,%,&,and & .
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Following (4], let the vector fields g1(x), " gn(x)
form a basis of the null space of J (x) , the system (1)
and(2) can be described by the following reduced system

i = gi(x)ug + - + gn(B)up = :8(x)u, (3)

Hi(x)u + C(x,2)u + G(x) = By(x)t (4)
where Hi(x) = g"(x)H(x)g(x),C(x,x) =
g (x)H(x)g(x) + g (x)C(x,x)g(x),G(x) =
gT(x)C(x),Bl(x) = gT(x)B(x). Also, (4) shows
the following two properties: 1) H,(x) is positive defi-
nit% and H, - 2C, is skew-symmetric. 2) H,(x)é +
Cx,x)E+ G(x) = V(x,%,6,8)a, where ¥, (x,
x,€,€) is a known matrix of x,x, & and &. For many
practical systems, H,(x) = AI(A > 0) is assumed. For
(4) to be fully actuated, B;(«) is assumed to be an on-
to map.

Now, the problem addressed is how to design a stabi-
lizing control law for the system (3) and (4) with un-
known constant inertia parameters .

3 Special case

In order to obtain a constructively adaptive feedback
law for the system (3) and (4), the following assump-
tion must be made.

Assumption 1 rank {ad} g.(x) | j 20,1 < &k <
Vx <0

With Assumption 1, the lemma in [5] can be modi-
fied as follows.

Lemma1l Letp(¢,x) be a time-varying T -period-
ic function such that

1) B(t+ T,x) = B(t,x), B(£,0) =0, ¥ (z,%),

2) B(-t,x) == B(t,x), V(2,%),

3) The solution of the following ordinary differential
equation (ODE) exists for all : € R

x = B(t,x)g(x). (5)
Let ¢(t,,1,,%) denote the solution to (5) with the ini-
tial state x at time ¢, ,i.e.

D1t 2) = BBt 1203)) (B 12,203

$(t2,t0,%) = %

m}:-n,

then the function V(z,%) = % | $€0,z,x) || 2is well

defined from R x R" to [0, + ® ) and has following
properties ;

) V(t+ T,x) = V(e,x).
ii) V(t,5) = 0=z =0,

2
%(t,x) = 0e==zx = 0.

1

iii) g—f(t,x) + g—:(t,x)ﬁ(t,x)gl(x) =0,

7(0,%) = o Il =l

iv) For any positive real number K ,the set {x | V(:,
%) < K, for some ¢t € R} is bonuded.

Proof the proof is just like that in [_5] ,80 it is omit-
ted here. Q.E.D.

With above lemma, the following theorem can be
proved.

Theorem 1 Consider the system (3) and (4), un-
der Assumption 1,if 8(t, ») satisfies conditions 1 ~ 3 of
Lemma 1 and

Lg'(x)V(t,x) é%ﬂgt(x) =0,lgi<m,

a/ .
a‘tjﬁ(t,x) =0, Vj=1

=x =0 (6)

then the feedback law

A= Bl#[fll'ly + 6‘17] + él - Kp(u - 77) - (LgV)T]
(7)

and the adaptive law

a=-I"Y[(x,2,7,7)(u-7) (8)
stabilize » and u to the origin, and a is bounded, where
K, and I" are positive constant matrices, 1,C , and G,
are the corresponding values of H,, C; and G, with esti-
mated parameter a, # is any left inverse, L,V =
[Lgl V,---,Lng] , and

B(t,x) - L (x) V(1,%)
- L (x)V(t,x
. WV |
= Lgm(x)V(t,x)

Proof Since functions 8, V, and r are T -periodic
with respect to time variable ¢ , the closed loop system
(3),(4),(7) and (8) can be considered as a time-in-
variant system on S' x R™*™*?( S' is a one parameter T
-period circle!™))



g =
% g(x)n(ﬁ %) + g(x)u(f,x),

4H1u= Yl(x,x,q(ﬁ,x),q(ﬁ,x))a - (10)
C(x)u - Ku - (LY)",
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= - I 'Y{(x,2,7(0,%),7(0,%))u
wherea = a - a,u = u — 7. Let positive function

Vi(0,%,5,3) = V(8,5) + 3(a'Ta + a"Hyu)
the derivative of Vl with respect to time along (10) is

550 + a—x + aTFa+ uTH1u+ %u Hu =

- 2 (L V) - u"Ku < 0.
i=1
Therefore V; is non-increasing. For any initial time ¢, ,

initial states %(2),u(¢p) and a(iy) , the solution of
the closed loop system is bounded (noting Hi(x) =
Al).

By the LaSalle invariant principle, any bounded solu-
tion of the system (10) converges to the largest invariant
set included in

A =1(0,5,u,a) | LV =0

(i = 1,2,",m),u = O}.
Mimicking the argument in[5], the largest invariant
set included in £ is x = Oandu = 0 .Fromu = u +
nand 7 — O, u converges to zero. In summary, the
states x and u of the closed system converge to zero
asymptotically, and state a is bounded. Q.E.D.
Remark 1 A possible choice 3(¢,x) is
x| .
Blex) = T an)”(lﬂ T () 19
The above feedback law depends on the expression of
V', which in tum involves the flow of the ODE (5) .Un-
der the following asumption, the expression of V can be

given easily.
Assumption 2

9

aJ %1 :

g1 = [1,0,-,0]7(i.e. gy =

Theorem 2 Consider the system (3) and (4),un-
der Assumption 1 and 2,and (¢, ) is such that
D y(e+ Tymgsym,) = ¥(8,%2,0055,),
v(:,0) =0, ¥ (t,%).

2) Lgi(x)W(x) =0,(1gi<gm) and (t x)

\

= 0,(j = 1) imply x = 0, where W(x) = %(kzx% +

e+ k), k> 02 < n).

Then the feedback- law (7) and the adaptive law (8)
stabilize the closed loop system states x and u to zero,
and ¢ is bounded, where V and j3 are as follows

V(t,2) = SLCkim + 7m0, 20 +

kzx% + 4 kg,

B(tsx) N k at(t X" 9xn)-

Remark 2 A possible 7(¢,x) in Theorem 2 is
7(t,x) = (agad + -
e, >02<j<n).
4 General case

This section deals with the stabilization of the system
(3) and (4) without Assumption 1.Due to complexity
of the general case,only existence of the adaptive law is
established , but how to construct the controller is not ex-
plicitly given.

+ a,x2%) coswt,where w > 0,

For a given time-varying function u(¢,%):R x R* —
R™,Let $,:R" x R— R" be defined by

Pet,0) = Suln bt Dalh(en),

$,(0,x) = x.
The following lemma is obtained in [6].

Lemma?2 For the system (3), there exists u satisfy-
ing condition 1 in Lemma 1 such that

I >0 |

$.(x,T) = %, Yx ER"
and ¥ x € R*/{0}, with input w = {w,
linear system

) =ix[jaiu,ﬁ(t,x))gi(mt,x))]y +

= 1, V(tyx) € Rx R,

,w,,,}, the

iw,-gmu,x))

is controllable with impulsive controls at time ¢ = 37

Theorem 3 For the system (3) and (4), the feed-
back law (7) and the adaptive law (8) can stabilize
states x and u to the origin, and @ is bounded. In the
feedback law (7), Vand = [,
lows.

, |7 are as fol-
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V(t,x) = 5 Il 832 (x,0) 112,
P = u(t,x) — Lng(t,x),(l < k< m).
Proof Let

Vi =V(t,x) + %[(& - a)'I''(a - a) +

(u~9)"Hi(u - 9)]

with aid of the proof of Theorem 1 and that in [6], the
theorem can be easily proved. Q.E.D.
5 An example

Consider the wheeled mobile robot in [4], the posi-
tion of the trolley in the plane is characterized by 3 vari-
ables %, yo and 6 . The nonholonomic constraint is ’;0
cos @ +ygsing = 0. Letx = [x,2,,%]7 = (6,2,
yol"and J(x) = [0,cos x,,sin %, ], this nonholonom-
ic constraint can be written as (2) . Choose

1 0
g(x) = [gl,gg(x)] =|0 - sinx;
0  cosx

0 5 10 15 20
time/s
Fig. 1 Response of x,x, and x,

6 Conclusions

In the paper, the stabilization problem of the dynamic
nonholonomic systems with unknown constant inertia pa-
rameters is addressed. An explicit adaptive control design
method is given for a class of systems. The feedback law
and the adaptive law are simple in structure. For the gen-
eral uncertain systems, the adaptive stabilization problem
is also studied. To illustrate the design method, an exam-
ple is considered. The simulation results show the ap-
proach is effective.
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