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CONTROL THEORY AND APPLICATIONS

Dominant Pole Placement Control of a Flexible Arm

Yuan Jin and Feng Haikun
(Department of Mechanical Engineering, Hong Kong Polytechnic University* Hung Hom, Kowloon, Hong Kong)

Abstract: Control of a flexible arm is an active research topic with many available results. A popular approach is to apply
modal analysis to a flexible arm and suppress its first few vibration modes. This research presents a simplé method to control a
flexible arm by focusing on the dominant poles. The controller is able to deal with as many modes as the feedback sensor system
allows. It can be incorporated with an adaptive law to deal with uncertainties hidden in the mode frequencies and damping ratios.
Stability of the closed loop system is established in the Lyapunov sense.
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1 Introduction

Control of lightweight flexible-link robot arms has
been an active research area since 1970, While flexi-
ble-link robots are most suitable for space applications,
their potential industrial applications are being seriously
studied due to their high payload-to-arm ratio, faster exe-
cutable motions and lower power consumption. As com-
pared to the rigid-link arms, control of a flexible arm is
more complex because there are two variables, i. €. the
hub angle and the deflection to be controlled. Even
worse, infinite number of oscillating modes are arising
from the elastic behavior that makes the development of
control laws for flexible-link arms far more difficult.

Numerous research works have been reported in the
past two decades on the design of control laws for the
flexible-link arms. These include linear control laws
based on LQG!'*! and stable factorization!) techniques,
and nonlinear control laws which utilize inverse dynam-
ics!>6] | self-tuning!”’, sliding mode'®*! and singular per-
turbation''”) techniques. However, most of the control
laws mentioned above assumed that the links had to be
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relatively stiff. With this assumption, the truncation of
the infinite dimensional model was deemed to be justifi-
able, and the resulting reduced order model was then
used for controller design purpose[“] . The destabilizing
spillover problem resulting from this model truncation
was intentionally avoided by using a comb filter!!>) . The
above approach suffers from the drawback that stability
of the entire system can only be guaranteed provided that
the discarded portion of the system is stable. In this pa-
per, dominant pole placement control is proposed to sup-
press the first few vibration modes, and most important
of all it can assure overall system stability. An adaptive
law is also presented to deal with the uncertainties in the
system physical parameters such as mode frequencies and
damping ratios and its stability is also established in the
Lyapunov sense.

The paper is organized as follows; Section 2 formu-
lates the problem under investigation and proposes a
dominant-pole placement control law. Section 3 presents
the adaptive version of the control law and its stability
analysis . Section 4 provides simulation results for a sin-
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gle link flexible arm, logether with a brief conclusion.

2 Problem statement

The presentation of the proposed controller is based on
the Euler-Bemoulli model of a single link flexible arm
pinned on a hub that rotates an angle of @ in response to
the external control toque t. The deflection of the arm,
measured with respect to a base line passing the hub ax-

is, is represented by

y(x,t) = w(x,t) + 26(¢). (1)
The model is a fourth-order partial differential equation
with four boundary conditions(?) .
7 Py
o APt (2)
Ixt a2
d*y )
El — + T - IH19 = O,w(O) =0, (3)
axz x=0
92 >
EI=2] _oamd BIZ| <.
axZ x=1L ax}’3 x=1L

Its general solution y(x,¢) may be expressed in mode

space as

y(r,0) = 2h(x)aln), (@)

where {¢;17, are the generalized coordinates, {$;} =
are the mode functions!? . Particularly, ¢, = 0 repre-
sents the hub angle and $¢(x) = «x the rigid-body
mode. According to Cannon and Schmitz!®, the gener-
alized coordinates satisfy dynamic equations

Qo = 77
,_1at@ O

éi + zfﬂ)ﬁi + wig; = Iy dx

The control objective is to synthesize r and force y(L,

t) = Zw:?‘i(L)q,-(t) — v, = 0, as fast as possible
where é;ois the desired hub angle. Introducing

Qnit = [0 - Basg1s" 5 qa 1

Dy, = diag(0,28 w1, ,25w,),

Qi = diag(0, i+, w}),

1. dé dyop
Bn+1 = ITl:l, dx 9 ’dx x=0>

Q. = [qn+19Qn+2""]T’

D, = diag(25n+1wn+1,25n+2wn+2,"'),
0, = diag(w?, ,02,2,),

and
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1 dé dbuo | qr
Be = IT[ dx ’ dx ’ ]x=09

one can express (5) as
Quit + Dus10nst + Q0s1Qni1 = Byt (6)
and
Qc + DO, + 2.0, = B.r. (7)
A flexible arm has infinitely many modes of which only
the first n ones are available. Coordinates of the first n
modes constitute an approximation space vector Q,,;
whereas coordinates of the remaining modes form the
complement space vector Q, .
The design process focuses on the sub-space spanned
by Q.. . It starts with a normalized vector b =

||371||B"+l .This is an (n + 1) -dimensional con-
n+l

stant vector. There exist n orthogonal unitlength vectors
perpendicular to b. Let ay, a5, *, a, denote these vec-
tors and construct an (n + 1) x n matrix A = [ ay, a,,
-+, a,] .One can write
AT =0 and ATA = I, (8)
where I, is an n x n identity matrix. A projection of
Q,..1 onto b and A leads to
Qry1 = bbTQn+1 + AATQn+1 = ba + 48, (9)
where
a =b"Q,,;, and B = A"Q,.;. (10)
Substituting (9) and (10) respectively, one re-writes
(6) as
&+ch+cna = €T - Tp,
B+ Cop+ CaB = - .,
where ¢p = D, 1b > 0,¢q = 72,16 > 0,Cp =
A'Dy1A > 0,Cq = A"Q, A > O,c5 = || Boyy I
bY(D, A8 + 02,.48) and 7, =
AT(D,,1ba + 2,,1ba). A simple control law is pro-

(11)

> O,Tﬁ =]

posed here as

. 1
z'_—kDa—-kna+cBrﬂ_

R }BbTwn“é ¥ Quz), (12)

where

AB = AATQ,yy = (T - BbT)Q,,,
(I - 5") Qi

can be computed without an explicit search for A.

Closed-loop stability is easy to analyze by the following

z

(13)

and z
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approach. Substituting (12) into (7) and (11), the
closed-loop system can be decoupled to
a + (ep + cgkpla + (eq + cghg)a = 0,  (14)
B+ Cof+CB=vr, (15)

Oc + DcOc + 'Qch = BC(CLBTﬂ - klﬂ - kna)

(16)
Fig. 1 illustrates the cascade relation of (14) ~ (16) .1t
starts with (14) ,a homogeneous equation. This sub-sys-
tem has a zero input response due to the initial offset § —
g, in the first element of Q,,; . The output of (14) is

asymptotically stable by a proper choice of kp and kg .
The fact that ¢y = b™D,,1b > 0,¢q = bTQ,,1b > O,
Cp = A"D, 1A > 0and Cy = A"Q,,14 > Ois very
important. The convergence of « to zero ensures the con-
vergence of § and Q, to zero and the convergence of y to
y4 . The control law (12) only places two poles of
(14) . Since the poles of (15) and (16) are due to the
high frequency vibration modes, it is recommended that
the poles of (14) be placed as the dominant poles of the
entire system, hence the name of the controller.

| a

s2+(cpreghp) s+Heategky)

Qc

<

(824 Do5+ Q) B,

|% AT D+ Quan)b ll* ~(s2+Cps+Co)”!
Y ’
kps+kg
; 5
- T
+

1
° bT(SDn+1+ O41+1)A
B

Fig. 1 A cascade of three subsystems

3 Adaptive control

Control law (12) requires exact knowledge of the
flexible arm model in terms of b, cp, cg,cq, D,”l and
,.1 -While b and ¢g can be computed using analytical
values, ¢p,cg,D,,; and £2,,; have to be measured via
experiments. A good controller should be able to tolerate
uncertainties hidden in cp,cq,D,,; and {2,,; without
degrading its performance. This is the focus of the cur-
rent section. Without the exact knowledge of cp,cq,
D,,iand 0, ,the control law has to substitute estimat-

ed values of kp, kg, D,,; and £2,, into (12) to get

L 14
T:—km—km-{-c—BTﬁ:

o L=x . &
— fopg - fige + c_BbT(D"”Z + Qz), (17)

where ffD i fcn y ﬁn +1 and Qn+1 represent, respectively , the
estimated values of kp, kg, D, and Q,,, .Let the Ak,
= kp - kp,OAkg = kg - kg, AD = D, - D, and
AQ = 0,,1 - ,, denote parameter errors. One may
express (17) as

T=-klﬂ-kﬂa+c_BTﬂ_AkDa—

(18)

Since AD and A(? are diagonal matrices, quadratic forms

Mk + LBT(AD: + AGS).
B

bTADz and bTAQz have equivalent expressions

bTADz = [bz]"Ad and bTAQz = [bz]TAw  (19)
where { bz] is a column vector whose ith component is
the product of the ith components of b and z . The same
construction applies to [ bz] . The diagonal elements of
mitrices AD and A{2 are represented by vectors Ad and
Aw respectively. As such, (18) becomes

T:—kDa—k,QQ'FC_BTﬂ—Ade—

Akga + c—lB([b.-;]TAd + [b2]TA®), (20)

which contains 2( n +2) unknown parameters. Substi-
tuting (20) into (7) and (11), the entire model of the
flexible arm, subject to the uncertainties, can be obtained

©as

a+cpa + cha = -
cg(Dkpr + Akga) + [b2]TAd + [ bz]"A®, (21)
B+ CB+ CoP =- 1., (22)

Oc + Dcoc + OCQC=BC(%;B . Elﬁ . Eﬂa)’(23)

B
where ¢ = cp + cghpand ¢y = cq + cghy are desired
coefficients of the characteristic equation that specify the
dominant poles. The above equations are similar to the
cascade system (14), (15) and (16).Only this time,
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there exists coupling between (21) and (22),due to un-

certainties hidden in Akp,Akg,A, and Aw. An adaptive

law is needed to deal with these uncertainties. It is given by
ift‘D = ds, ;‘In = as,

. g (24)

d=—s[bz], w=- s[bz],

where d and w are two vectors whose elements corre-
spond to the diagonal elements of D,,; and 2, ., respec-
tively ; these adaptation processes involve an intermediate
variable s = a + ka with a constant gain0 < & < ¢},
that ensures

n=cp-k>O0. (25)
Stability of the closed-loop system is established by the
following Lemmas.

Lemma1 The cascade system (21),(22) and (23)
is globally stable. All variables of the closed-loop system
are uniformly bounded.

Proof Consider a Lyapunov function candidate

L =%[32 + (k + cp)a® + cg(Dkp)? +

cg(Bkg)? + Ad™Ad + Do ™Aw ], (26)
and evaluate its time derivative along the trajectory of
(21) . One obtains

L =- 2 chha® + cp(Akphy - Akpsa +

Akgkg — Akgsa) + A7Ad + s[5 ]TAd +

oTAw + s[ bz]"Aw (27)
which is actually
L =-p’-chh® <0 (28)

upon substitution of adaptive law (24 ). Since L is de-
creasing monotonically, it is uniformly bounded. Adap-
tive errors Akp,Aky,Ad and A® as well as tracking er-
rors o and a are all uniformly bounded. It then follows
that r, = A"(D,,1ba + Q,,1ba) is also uniformly
bounded . Uniform boundedness of 7p follows that of 7, ,
since it is the output of (22) when excited by z,. The
two signals combine to excite (23) and cause a uniform-
ly bounded ¢,.  Q.E.D.
Lemma 2 For the cascade system (21),(22) and
(23) , variables «, 8 and Q, will converge to zero.
Proof The first step is to prove a — 0 and « — 0
using the Barbalat’ s Lemmal'"®! . It requires a uniformly
continuous L, or a uniformly bounded 7. From (28)
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and (21), one obtains
L =-2pa - 2¢phoa =
- 2alchke + p([b2]"Ad + [b2]"Aw -
cgOkpe — cghkoa - cha — cja)l,
whose right side is a nonlinear combination of variables
that have been proven uniformly bounded by Lemma 1.
Therefore [, is uniformly bounded and L uniformly con-
tinuous. The convergence of [, — 0 is implied by (28)
plus a uniformly continuous L . As the result, a,« and
7, Will converge to zero. The output of subsystems (22)
and (23), namely 3, 8, 75 and Q, , will all converge to
zero due to the cascade effect. Q.E.D.
4 Simulation and conclusion
The proposed control law is simulated in Matlab with
a flexible arm model. The dimension of the flexible arm
is Lx Wx H =1x0.00635 x 0.0381 m® with Young’
s Modulas E = 7 x 10" N/m? and density p = 0.653225
kg/m evaluated along its length. Mode functions and fre-
quencies are obtained by standard analytical calculations.
The damping ratio is assumed to be 0.06 for all modes.
The simulated flexible arm has five modes. The con-
troller is synthesized by (12) and (13) with n = 2,3,4
and 5 respectively . Analytically, the closed-loop is equiv-
alent to a cascade model (14) ~ (16). Practically, the
control law (12) and (13) is independent of (14) ~
(16) . The simulation synthesizes a torque to drive the
five-mode model (5) instead of (14) ~ (16) . With n <
5, the simulation tests the effects of the controller on
higher order modes which are ignored by (12) and (13)
yet included in the simulated arm. With n = 5 , the sim-
ulation examines the best response of the closed-loop
system when the controller makes use of all available
model information .
Fig. 2 plots unit step responses of y(L,:) =
5
D1.(L)q.(1) subject to the proposed control law. It is
i=0
observed that the rising time reduces as the number of
modes used by the controller (12) and (13) increases.
The controller has no negative effects on those modes
that exist in the closed-loop system yet ignored by (12)

5
and (13).In all cases, y(L,t) = ,2_:0¢i(L)q;'(t)_>_'}’d
= 1 within a short period of time.
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Fig. 2 Step responses of the closed-loop system
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