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Abstract; This paper concentrates on computational method, @ -parameter utilization problem, stable controller design and
reduced order design in H,, controller based on chain scattering description of transfer function and (J, J') -loseless factoriza-

tion.

Key words: chain scattering description; (J, J') -loseless factorization; H,, control

E TS HEAN H 325 88i%1t

REE FAH
(HE 25 B b6 57 -d6 5T, 100080)
W BT H WAL BR T Q BEMBHBZHRNXE. AR 0SB BI R

#L,HFMA Q SHUETEHARMEN . BRI T A XA TF.

REIA: GEBAT MR (1,)) -TRBETH®; He B

1 Introduction

It was pointed in [1] that we could solve H, con-
trol problem based on chain scattering description of
transfer function. The same idea was also presented in
[2,3]. Youla parameterization and model match problem
are not necessary to solve H, control problem. It gives a
simple and unified framework for H,, control problem.
Futhermore, as shown in this paper, the special structure
of controller parameterization makes it possible to use
free parameter Q(s) to satisfy more specifications, such
as to design stable controller and design reduced order
controller.

Usually, closed loop transfer function ®(s) is repre-
sented as Linear Fractional Transformations ( LFT). If
@ (s) is represented as:

@(s) = CSD(S(s),K(s)) =
(Su(s)K(s) + Sip(s))(Su(s)K(s) + Sp(s))1,
(1)
we say equation (1) is Chain Scattering Description
(CSD) of ®(s), where
S(s) = Si(s)  Sp(s)
Su (s) S 22( s)
K(s) € R*9, r = q.
We can obtain directly CSD from LFT for 1-block and
2-block problem'! . It can be shown that if and only if

] c R(m+r)x(p+q).

we can get (J,J') -loseless factorization of S(s) then
we can get solutions to standard H, control problem;
Find K(s) stabilizing closed loop system and
| &(s) | « < 119, For general 4-block problem, we
need to introduce some auxiliary signals to get CSD, see
[3,4] for detail. In this paper we focuse our attention on
computational issues. For simplicity we consider only 1-
block and 2-block problem. But it should be noted that
our method can easily be extended to 4-block problem.

Computation of (J, J') -loseless factorization in the
state space was discussed in [2 ~ 6] based on Algebraic
Riccati Equation. In all these methods it was assumed
that there exists an nonsingular matrix D, €
RP*0)%(p+4) guch that

D7)y Dx = D', D, (2)

where J,,,, = diagil,, - I.1,J,, = diagll,, - I},
mz=p=0,r=q=0,D€ R™*P+D D js used
to give solution of (J, J') -loseless factorization. In [2
~4] a special D, is solved for a particular D. In [7] a
simple numerical algorithm is proposed to compute the
solution of equation (2) .In Section 2 we give a numeri-
cal algorithm to compute (J, J') -loseless factorization
in RL, .

Next in Section 3 new state space parameterization of
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controller is obtained. We discuss the relation between
the order of controller and parameter Q (s).

In Section 4 we discuss how to get stable controller,
whose order does not increase at the same time, by con-
stant matrix parameter D! € ®?*7,5(D,) < 1.

In Section 5 we propose a method to get reduced order
controller by parameter Q(s).

Finally we have implemented our algorithms in Matlab
environment . Design examples of ordinary controller, sta-
ble controller and reduced order controller are given to
demonstrate our method.

Notations; IRH., ; set of stable rational proper matri-
ces, RL, :set of rational proper matrices without pole
on the jw- axis, R”*?; constant real p x ¢ matrix, deg
(6(s)) :McMillan degree of G(s),A(A); eigenvalue
of A, p(A): maximum eigenvalue of 4, o (D). maxi-
mum singular value of D, I,,; identical matrix in [8™*™,
X = Ric(H): solution of algebraic Riccati Equation:
XA + ATX - XPX + Q = Osuch that A — PX is stable,

A - P]
-Q - AT )
2 Computing (J,J')- loseless factoriza-

where H = ;[

tion in xL,
From [7] and Theorem 2 in [6], we could give an al-

gorithm to comptte (J,J')- loseless factorization in

A+ BF 0| By
0 A| B, |D;',
C+DF C| D

O(s)

I(s)
- F(I - vx)!
B, (1 -YX)"“(B+YC"],D)
[32] LUy v(xB + ¢YD)

Step 4 Find the minimal state space realization of
@(s)and II(s) .

Remark Our formulae for S(s),T(s), which are
natural and suitable for computation, are different from
[6].

3 Computation of H,, controller
3.1 Algorithm to compute H, controller

We shall outline the steps to compute H, controller

based on CSD of closed loop transfer function and ( J,

J') -loseless factorization .

[A_ + YC'].C+ (B + YC"], D)F(I - ¥YX)"' |-(B+YC"],D)

Vol. 16

RLs .
Algorithm Given state space realization of parti-
tioned matrix S(s) (equation (1)) belongs to RLe, :

7. @)

S(s) = C(sI-A)'B+D = :[A_.D_

C

where A € R™", B € R+,
C e R("Hr)xn,D c R(m+r)x(p+q)_

Step 1 Using the algorithm in [7] to solve equation
(2) to get D,. If D, does not exist, S(s) has no such
factorization, retum.

Step 2 Solving two algebraic Riccati equation: X =
Ric(Hx),Y = Ric(Hy), where

E= ’[_ CI:JWC _OAT] - [_ C{?FJWD] '

(p"71,0)'[D"],.D B],
AT C'J.C

Hy = .

r=ly

fX=0,Y = 0and p(XY) < 1 hold, continue; else,
S(s) has no such factorization, return.

Step 3 We get state space realization of (J,J)-
loseless factors: @(s) is (J, J')-loseless, II(s) and
II(s)™1is stable. 7

S(s) = @(s)I(s)™ (4)
where

-1
Tt

I
F=-(D"],D)'(B'X + D"J],C).

Step 1 Computing the CSD of closed loop transfer
function. we can get CSD directly from robust control
problem (such as mixed sensitivity problem) or convert
from ordinary state space realization of generalized
plant[l'Z] . Supposing we get state space realization (3).

Step 2 Computing (J, J') -loseless factorization of
generalized plant S(s) using the algorithm in section 2.

Step 3 Computing H,, controller K(s). Supposing
we get (J,J') loseless factorization (4), then all the

H.. controllers are given by
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K( ) = CSD(H( ),0(s)) (5)
where Q(s) € RHP*? and || Q(s) || » < 1. To effi-
ciently compute K(s), we shall give its state space real-
ization,

3.2 State space parameterization of controller
Theorem 1 ( State space parameterization of K(s))
assuming || 0(s) || » < 1, let

I (s)  Hp(s)

I(s) =
Iy (s) In(s)
A B| B,
¢ Dy| Dy |,
Gy Dy
(s) [Aq B, ]
Q ’ o Cq Dq ’
Bk
K(s) = eSD(I(2), 0()) =:[ 1],
Gy
then
A BICq B]Dq + B2
w=ly il |
0 4, B,
(DuDy + Dp)~'[Cy, DyC,l,
B.D, + B,
Bo=-| """ | (Db, + D),
Bq
C,=[-C -DycC ]+(D11D +

Dp)(DyD, + Dp)~'[C, DyC,l,
Dy = (DyD, + Dp)(DyD, + Dyp)~'.

Specially, if A, = B, = C, = 0, we have

Ay = A - (BiD, + By)(DyD, + Dp)™' Cy,

B, = - (B\D, + B;)(DyD, + Dyp)~',

Cr =-Cy + (Dlqu + Dlz)(Dleq + Dyp)7'Cy,

Dy = (DyD, + Dp)(DyuD, + Dyp)~t.
To simplify notation, A is substituted for 4 + YC"J,,C
+ (B + YC"J,D)F(I - YX)™!in Section 3.

Proof We verify the theorem by direct computation.
First, we get the following identical relation(Here 4, B,
C:,Cy, Dy, D, are arbitrary matrices of compatible di-

mensions ) ;
-1
reitare
A - BD; CZ_ | - BD3!
[— Ci + D\D;'C, | D\D3 ] (©)

Through direct computation we have:;

HH(S)Q(S) + ng(s) =

Farmtaraiite el B

A Bl Cq Bqu + BZ
> B, ,

—Cl Dan |D11Dq + D12
Iy (s)Q(s) + sz( E

e o[ 2]
¢, | Dy Hc ID C2|D22 )
‘A BC, | BD,+B, -

0 4 | B

LC, D21Cq D21Dq + Dy

On the other hand, K(s) = CSD(II(s),Q(s)) =
(I (s)Q(s) + H12(S))(H21(S)Q(S) + Ip(s))™".
From above equations and (6) we complete the proof of
first part of theorem 1. The rest follows by substituting
A = B = C

. . = 0 and eliminating uncontrollable

q
modes.

3.3 The order of controller and Q(s )

In Section 2, we obtain the state space realization of
O(s) and II(s) . Given chain scattering matrix S(s),
deg(II(s)) < deg(S(s)). (Generally realizations of
B(s) and II(s) in Section 2 are not necessary mini-
mal) .

From state space parameterization of controller in Sec-
tion 3.2, we have:

deg(K(s)) < deg(II(s)) + deg(Q(s)) <

deg(S(s)) + deg(Q(s)). (7)
If deg(Q(s)) = deg(K(s)) <
deg(S(s)), i.e., the order of controller is no larger

0, we have:

than the order of generalized plant. Sometimes when we
carry out minimal realization of IT(s), we can get; deg
(II(s)) < deg(S(s)), choose Q(s) = D,,a(D,) <
1, thus we can get controller K(s):deg(K(s)) <
deg(S(s)), i.e.,the order of controller is lower than
that of generalized plant. In fact we obtain such an ex-
ample, see Appendix.

It is clear from Theorem 1 that when we set Q(s) =
D, the order of controller does not increase , where D, is
an constant matrix, ¢(D,) < 1. Maybe we could use

such parameterization to satisfy other specifications such

as reduced order controller, stable controller, etc. .
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If deg (Q(s)) > 0, generally the order of controller
will increase.

Remark Because the order of minimal realization
of II(s) may be less than that of generalized plant,
sometimes the order of our controller is lower thar that
of DGKF’ s8] . It is interesting that even then our method
is different from that of DGKF, we find that the poles
and zeros of resulted controller are consistent (Q(s) =
0) in our numerical design examples.

4 Design stable controller by Q(s )

If we set parameter Q(s) = 0, sometimes we get un-
stable controller ( both in our method and DGKF
method) . In fact, we obtain such an example ( see Ap-
pendix) .

To obtain stable and lower order controller, we may
use constant parameter

Q(s) = D,,6(D,) < 1,D, € R**7.  (8)

From Theorem 1, controller K(s) is stable if and only if

Ay = A - (BiD, + By)(DyD, + Dp)~'Cy (9)

is stable, equivalently, to get a stable controller K(s) is
to find a constant D, & R"*? such that

max A(A - (B\D, + B)(DyD, + Dp)™'C,) < 0.

&(Dq)<1
(10)
Ifp = ¢ = 1,(10) could be efficiently solved by di-
chotomizing search in set ( —1,1).

When p, g are not too large we may find an appropri-
ate D, through search. For large p , ¢ how to numerically
solve (10) is now being investigated.

5 Design reduced controller by Q(s )
5.1 Introduction
Generally ,H,,, controller can be represented as follows:
K(s) = CSD{I(s),
Q(s)) = (I (s)Q(s) + Mp(s)) -
(I (s) Q(s) + Hp(s))™" =
N(s)D(s)™, (11)
N(s) = Ou(s)Q(s) + Mp(s),
D(s) = Oy(s)Q(s) + Ix(s)
where Q(s) € RH*?and || Q(s) ||« < 1.

In this section we propose a method to get reduced or-
der controller by Q(s). A reduced order controller de-
sign example is given in Appendix.

5.2 SISO case

We investigate the problem to get reduced order con-
troller by Q(s) for SISO system (p = ¢ = 1). We want
to find a Q(s) to cancel common zeros of denominator
D(s) and numerator N(s) of K(s). If there exists a
Q(s) € RHP*?, || @(s) || w < 1 such that equations
(12),(13):

N(s) = Oy(s)Q(s) + Mp(s) =0, (12)

D(s) = Iyu(s)Q(s) + HIp(s) =0 (13)
have common zeros, the common zeros of D(s) and
N(s) can be cancelled. On the other hand from the dis-
cussion in Section 3 we have: if deg(Q(s)) = 0, the
order of K(s) will not increase when Q(s) is nonzero.
So if we take Q(s) a constant parameter, when equations
(12),(13) have common zeros, we shall get reduced or-
der controller. Since at least one zero of denominator of
K(s) is cancelled,a n-th order controller will reduce to
at least a (n — 1)-th order controller.

Theorem 2 If s; is a common zero of equations
(12),(13) , we must have:

Iy (s) Ip(s;) = Hp(s) Iy (s;) = 0, (14)
Q(s;) =~ Hyp(s;) /My (s;). (15)

Corollary 1 The common zeros of D(s), N(s) are
all in open left half plane.

From Theorem 2 we have the following algorithm to
compute Q(s) and K(s) (SISO case)

Step 1) Solve algebraic equation (14) we get s;.

Step 2) From equation (15) we get Q(s;).

Step 3) Choose: Q(s) = Q(s;), where s; is a solu-
tion of equation (14) with the largest multiplicity and Q
(s;) is a real number whose absolute value is less than 1.

Step 4) From Theorem 1 we get K(s). Computing
minimal realization of K(s) we get reduced order con-
troller.

5.3 MIMO case

In this case the problem is more difficult than SISO
case. Here we give partial solution to this problem. If
there exist 0 = & € R7,0 = & € R7 and Q(s) €
RH?*7, || Q(s) | « < 1 such that equations (16),
(17):

N(s)é& = (I (s)Q(s) + Hp(s))& = 0,
(16)

D(s)é& = (Myu(s)Q(s) + Mp(s))& = 0
(17)
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pave common zeros, we can cancel these common zeros
of D(s) and N(s). Thus the order of controller,i.e.,
the number of zeros of D(s), will decrease at least by
1. From discussion in Section 4 we know that when
deg (Q(s)) = 0, the order of controller will not in-
crease. So if we choose a constant matrix which makes e-
quations (16), (17) have common zeros as Q(s), the
order of controller must decrease at least by 1,i.e., n -
th order controller must reduce to at least (n — 1)-th or-
der controller.

Theorem 3 If s; is a common zero of equations
(16),(17) and &€ = &, = &, = 0, we have;

det(II(s;)) = 0, (18)
where IT( s) is defined in Theorem 1.

Theorem 4 Supposing £ € R?, » € R?, there ex-
ists Q(s;) € RP*9,6(Q(s;)) < 1,9 = Q(s;)€if and
only if77T77 < &'e.

From Theorem 3 and 4 we have the following algo-
rithm to compute Q(s) and K(s) (MIMO case) ;

step 1)  Solving algebraic equation (18) we get n
zeros s; of II(s). One can use Matlab function tzero() .
Ordering zeros s; by their multiplicity.Let i = 0.

step 2) Ifi < n, solve linear equations: II(s;) ¢ =
0, where § € RP*?; if i = n, retumn.

step 3) Partition § as: { = [y £7]7, where §é €
R?,7p € R*.If p"yp < £"¢, from Theorem 4 we get
Q(s) = Q(s;); If there exists no such &, 7,i = i +1,
go to Step 2) .

step 4) From Theorem 1 we get K(s). Compute
minimal realization of K(s) we get reduced order con-
troller.

6 Conclusion

In this paper we discuss numerical computation
method and Q- parameter utilization in H., controller
based on CSD of transfer function and (J, J') -loseless
factorization. We propose methods to design stable con-
troller and reduced order controller by Q(s).

We give a numerical method to compute (J, J')-
loseless factorization in RL,, . Then we outline the pro-
cedure to compute H,, controller based on CSD of gener-
alized plant and (J, J')- loseless factorization.

We give state space parameterization of controller and

the order of controller is discussed. How to obtain lower
order stable controller through constant matrix parameter
is discussed . Finally we give a method to get reduced or-
der controller by parameter Q(s).

Our method has been implemented in Matlab environ-
ment. Design examples are given to illustrate the proce-
dure . How to use our controller parameterization to satis-
fy more specifications is worthy of further investigating.
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Appendix H, Controller design based on chain scat-
tering description

We demonstrate the design procedure of ordinary controller, sta-
ble controller (Section 4) , and reduced order controller (Section 5)
through a simple imaginary plant. (adopt from[6])

% A B  Bra
[ Z} . Cl D11 D12 { w:l
G

Dy Dy u
R B EL R W I O

o[ a-171

Dy = Dy =0,Dp = [(1)] »Dy = 1.

Step 1 compute chain scattering description matrix S(s);
In this case, D,, is invertible, we can directly get S(s):
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| A- B/D3'C, | B,- BD5'Dy, B, A; = 1, we get a unstable controller. Clearly we can get lower or-
S =| € - D, D;5'Cy | Dy - Dy D5 Dy Dy D3| = der (order less than 2) stable controller by taking any 1/3 < D, <
_DiC, — D5'Dy Dyl 1. For example if we take Q(s) = D, = 5/6, we have K(s) =

2 0 -1 1- (5s + 11)/(6s + 9), which is a 1-st order stable controller.

0o -1l-1 2 b) Compute reduced order H., controller.

2 H“(S) = (S+7)/(S+5),H12(S) =—4/(S+5),H21(S)
1 ’ 1 0 =3/(s +5),Hp(s) = (s = 1)/(s +5). Solve equation (15)
L 3 0 1 we get common zero: s = — 1, From equation (16) we have Q( -

Step2 Find (J, J') -loseless factorization:
In this case, m = 2,r = p = ¢ = 1. First, we solve (2) to get

1 0
aD, = [O 1] , then by solving two Riccati equations we get X

=mdm)=u ﬂ;mY=mam)=m ] = 0. T

we get (J, J') -loseless factorization:

-2 |-11
210 0O
@ = ,H =
(s) uld % (s) {
110 1

Step 3 Compute H,, controller.
a) Compute stable H,, controller.
From Theorem 2, take Q(s) = D, where D, is a constant

number (p = ¢ = 1). We have;: K(s) =
[1_31),, |- D, +2 ] ol

VA, =1-3D,.1 =D, =0,
-2+3D, | D, ¢ i 1EQLs) = Dy

1) = 2/3. Taking Q(s) = 2/3 we get reduced order controller

K(s) = 2/3, which is a zero-th order proportional controller.
Remark For the above plant, the controller designed by

DGKEF method in Robust Toolbox in Matlab is ( Q(s) = 0): K(s)

-2 3|1
= |: 0 1 2} . Cleary K(s) is unstable and its order is higher

0 20
than that of our controller.
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