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Feng Zhaoshu, Wang Jian,

Liu Hongwei

and Liu Yongqing

(Department of Automatic Control Engineering, South China University of Technology * Guangzhou, 510640, P. R. China)

Abstract: In this paper, by applying the decomposition method of dynamic large-scale interconnected systems, a stability
analysis is given for the random Hopfield neural networks described by Ito stochastic differential equations. Such neural networks

are viewed as an interconnection of many single neurons. Stability results given in this paper are phrased in terms of the qualita-
tive properties of the individual neurons and in terms of the properties of the interconnecting structure of the neural networks.
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1 Introduction

Neural networks take advantage of distributed infor-
mation processing and inherent potential for parallel
computation. So neural networks have been used as no-
vel computational systems with extremely robustness
with respect to malfunctions of individual devices (see
[1],{21,{3]). And since neural networks possess be-
havior of global stability in many cases, they can be used
as an information processing system in which the evolu-
tion of an imperfect pattern towards the correct (stored)
pattern is realized, which is analogous to the storage of
information in an associative memory (refer to[4] and
(5]). This shows that the qualitative analysis of neural
networks is necessary and is very important.

In recent years, Hopfield-type dynamic neural net-
works have been studied by a lot of literature, such as
[6] and [7]. Most of the authors discussed asymptotic
behavior of the deterministic Hopfield-type neural net-
works model. Only a few authors obtained results for
asymptotic behavior of the corresponding model with
random perturbation.
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In this paper, a stability analysis is given for random
Hopfield neural networks described by Ito stochastic dif-
ferential equations by applying the decomposition method
of large-scale interconnected systems. First, stability
analysis is given for neurons which are viewed as the
isolated or free subsystems. Second, the entire neural
networks are considered as the large-scale systems which
consist of many neurons (isolated subsystems) and inter-
connecting structure.

2 System description and definitions

In the present paper we will discuss the random
Hopfield neural networks described by the following Ito
stochastic differential equations

Z Twdt —

injujd‘zj + L(Dde,i = 1,0,
j=1

Cidu; = u di +

N (1)

where C; > 0,Tj = o, R, ER = (- =, ), L -

R ’ T;

1 N

& ,21) | Ty 1, R > 0,1; R = [0,0) =R, is
continuous, v; = g;(u;),gi:R—>(-1,1),g;is contin-
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uously differentiable and strictly monotonically increas-
ing (i.e., gi(uw';) > g(u";) if and only if u} > uf),
ug:(u;) > Oforallu; =« 0,g,(0) = 0,E; € R, and
5 = {z(t),t = 0} the scalar normalized Wiener pro-
cess with independent components. In (1), C; denotes
capacitance, R; denotes resistance (possibly including a
sign inversion due to an amplifier), g;(-) denotes an
amplifier nonlinearity, ;(+) denotes an external input,
and Eju; characterizes the strength of the random pertur-
bation.

By using the appropriate transformations, (1) can be
rewritten by the following equivalent form

N
dxi = - bixidt + ZAUGJ(x})dt +
j=1

N

Dlegdz + U(t)de,i = 1,+,N (2)

j=1

where G;(0) = 0, the origin x = (x;,*,xy)" = (0,
-+,0)" = 01is an isolated equilibrium of (2). And b; >
0,4; € Rye; ER, | e I < €56, € B, GiR— ey,
cz) c (=2,2) (where ¢; < 0 < ¢3), G; is continuous
differentiable, G; is strictly monotonically increasing in
x; ,and x,G(x;) > Oforall x; 2 0 . Also, U;:R—Ris
a continuous function.

By the existence and unique theorem for solution pro-
cess of stochastic differential equation, under some ap-
propriate assumptions (refer to [8] and [9]), for any
given xg = (%19, ,%p)" € RY and for a specific al-
lowable external input U(¢) = (Uy(2),, Uy(£))",
the system (2) possesses a unique solution process $( ¢,
($1Ct, 10, %0) s > Pn(t,t0,20))" , with

$(t,t9,%0) = %9, which exists for all z = ¢y = 0 with

t09x0) =

probability one. On those occasions where the context is
clear, we will frequently write #(¢) = ($,(¢), -,
¢y (£))Tin place of $(t,tg, xg).

It will be convenient to view system (2) as an inter-
connection of N free subsystems (or isolated subsys-
tems) described by equations of the form

dp; = - bp;dt + A;G;(p;)dt + egp;dz; + U (t)de.
(3)

Under this viewpoint, the following terms
N
> [46(x)dt + epdy], i = 1,2, N (4)
jeinj=1
are considered as the interconnecting structure of the sys-
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tem (2).

Letx = (a1, ,ay)" € RY, U(s) = (U,1(¢),,
Uv(eDTERY, A = (A yuws 6(x) = (Gi(x1) s
Cr(ay))™ E = (ej)nensz = (21, 29)" € RY and
B = diag( by, ", by)". By using the notations, we can
rewrite system (2) in the following equivalent form

dx = — Bxdt + AG(x)ds + ExIdz + U(t)de
(5)
where I denotes the identity matrix.

The entire neural networks (5) can be considered as
an interconnected system or a composite system with de-
composition (2) .

Stability results for (5) involve the existence of Lya-
punov function V;RY — I which has second order con-
tinuous partial derivatives, and stability results for (5)
require the differential operator £ defined by

BV sy(x) :?)_:[_ Bx + AG(x)] +

N

G i (6)

3 Stability conditions for single neurons

The stability results for the entire neural network (5)
(given in the next section) are closely related to the sta-
bility results for the individual free neurons (3) . For this
reason , we first give a stability analysis for these subsys-
tems. It will be convenient to give the following hy-
potheses. ]

H1) For (3), U,(¢t) = Oforall t = t; = 0.

Let ;(p;) = 4iGi(p;) - bp; +%32iip2i’B(ri) = ip;
ER:-r,=p; = r;} forsomer; > 0.

H2) For (3), f;(p;) < O when p; > 0,f;(p;) >0
when p; < 0, and f;(p;) = O when p; = 0 for p; €
B(r;). For the definitions of almost sure asymptotic sta-
bility and almost sure exponential stability of the equilib-
rium of (3),refer to [9],[10],[11] and [12] .

By the assumption imposed on the functions G;(p;) in
Section 1, for r; > 0 there exist constants ¢;; and o;, such
that

oapt < piGi(p:) < oupls
or equivalently, when p; < 0,
o < % <op,—r<p <. (8)

13

-nn<p<r (7

We will also use the next hypothesis.
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H3) For (3), (- b; + A;9; + %ezu) < 0, where, 0;
= o, when A; < Oand §; = o, when 4; > 0.

We now give the following result for single neurons.

Proposition 1  Assume that for (3) hypothesis H1)
is true.

i) If H2) holds, then equilibrium p; = 0 of (3) is al-
most surely asymptotically stable.

i) If H2) and H3) hold, then p; = 0 of (3) is almost
surely exponentially stable.

Proof

punov function

i) For (3), we choose the following Lya-

v(p;) = %P;Z (9)
By the assumption that H1) holds, we have
gyig)(Pi) = pi( - bp; + AiGi(p;) + %e%ipi)-
(10)
And H2) guarantees that v;(p;) is positive definite and
Xvi@)( p;) is negative definite. Hence, the equilibrium
p; = 00f (3) (with U;(t) = 0) is almost surely asymp-
totically stable.

ii) Choose (9) as a Lyapunov function for (3). By
the assumption that H1), H2) and H3) hold, we get that

g”i(g)(l’i) < (- b+ AS; + e3)p? (11)
for | p; | < r;. Since (- b; + A;0; + €%)p? < 0, it fol-
lows that the equilibrium p; = 0 of (3) is almost surely
exponentially stable.

4 Stability conditions for neural networks

It will be convenient to give the following hypotheses.

Al) For system (5), the external inputs are all zero,
i.e.,

U(t) =0, i=1,,N. (12)

A2) For system (5), the interconnections satisfy the
estimate

xiA,jG,-(xj) < %07 (13)
forall| ;| < r;y | % | < 1j,8,j = 1,-*, N, where a;
are real constants.

A3) There exists an N -vector « > 0(i.e.,at =
(ay,***,ay)and a; > 0,7 = 1,+**, N) such that the test
matrix § = (s;) which is given by

_ a; (- b,’*‘“ii"'%Ne%)’ i =7,
S = (14)
i(oza-- + ;) I j
5 \@iaj + ab;
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is negative definite, where b; is defined in (5) and a; is
given in A2).

Now we establish the stability conditions for neural
networks .

Theorem 1 The equilibrium x = O of the neural net-
work (5) with decomposition (3) is almost surely expo-
nentially stable if A1), A2) and A3) hold.

Proof For the entire system (5), we choose the fol-
lowing Lyapunov function

Vix) = i %aix% (15)

i=1
where the a; is given in A3). The function given in
(15) is obviously positive definite. The differential op-
erator % acting on V (refer to Section 2) ,i.e., FV ,a-

long the solution of (5) is given by
N

,%V(5)(x) = 2 %ai(zxi)[_ bx; +

i=1

N N
2 A6(x)] + 2 el (16)
j=1

ij=1

where Al) has been applied. By (A2) and | ¢; | < ¢;,

we have
N 1 N

FV(s) Szai[(— b; + 7Ne%)x% + xizaif”j] =
i1 Ij =i,

@ Rw (17)

forall | x |, < r,wherew” = (| 2y |, 1 xy 1),r

N
1
= min;(r,), 1 x 1, = (2 x)2and R = (ry) yyy is
=)
given by
| }
(Zi(— b,‘ + a; + —Ne,-), 1 =7,
ry = 2 7 (18)
Qs 2
It is noted that

R+ RT
—

wTRo = w'( 2

= 'So < Ay(S) 15 13
(19)

where S is the matrix given in A3) and A,(S) denotes
the largest eigenvalue of the real symmetric matrix S .
By the assumption, S is negative definite. So we get
that A (S) < 0. By (15) and (19),in some neighbor-
hood of the origin x = 0, the following inequalities hold

alxli<v(x) el xll, (20)

HBVisy(x) <=3l % 13 (21)

where ¢, = %min(ai) > 0,¢ = %max(a,-) > 0, and

¢3 = — Ay(S) > 0. Hence, the equilibrium x = 0 of the
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neural network (5) is almost surely exponentially stable.
The above discussion shows that the conditions of
Theorem 1 provide a means of analyzing a complex neu-
ral network in terms of the qualitative properties of the
free subsystems (3) and in terms of the interconnecting
structure of the networks (5). If in A2), we take abso-
lute values of both sides of the inequality for i > j and if
we apply (7) ,we obtain
iy (22)
In this case we may rephrase hypotheses A2) and A3) in
the following manner.
-A4) For system (2), the interconnections satisfy the
estimates

| xAG (%) I <] % 11 A L ap | 31

xAGi (%) < SAS (23)
and
| 2 AG (%) < w11 Ay Lo oo 1,0 5 )
(24)

where 6, = o;, when A; < Oand §; = g when 4; > 0
forall | o, | < 1y, | % 1< 1j5iyj = 1,7, N.

AS) There exists an N -vector a > 0 such that the text
matrix $ = (S;) yyn specified by

ai(— b; + SiAii + %Ne%), [ = j,,

Si =
D i Ay e A o), i

(25)
is negative definite.

Similarly as in Theorem 1, we now obtain the follow-
ing result.

Theorem 2 The equilibrium x = O of the neural sys-
tem (5) with decomposition (2) is almost surely expo-
nentially stable if hypotheses Al),A4) and AS) are sat-
isfied.

5 Conclusion

In this paper, a stability analysis is given for the ran-
dom Hopfield neural networks described by Itd stochastic
differential equations by applying the decomposition
method of large-scale interconnected systems. The dy-

namic neural networks are considered as an interconnec-
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tion of many free (or isolated) neurons." Sufficient con-
ditions are first given for the neurons (free subsystems )
and second for the neural networks (interconnected sys-

tems, or large-scale systems,or composite systems) .
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