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Convergence of an Algorithm for Optimal Control of
Nonlinear Continuous-Time Systems with Model-Reality Differences "
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Abstract: This paper presents an extension algorithm of dynamic integrated system optimization and parameter estimation
based on time-variant linear-quadratic problem for nonlinear optimal control where model-reality differences exist. Convergence
of the algorithm is inverstigated. A sufficient condition is derived for the convergence and optimality of the algorithm. It is shown
that limit point of the algorithm solution satisfies the maximum principle for optimal control. The implementable conditions of the

algorithm are emphasized, simulation example denotes the efficiency and the applicability of the algorithm.
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1 Introduction

In the industrial process control, the steady-state opti-
mization control has made considerable headway[l] .
However, the dynamic optimizing control methods are
still based on the exact model'?! . Because it is difficult to
identify or it is not permitted to introduce the external
excitation for systems, the model-reality differences exist
for many industrial processes, and so, the model based
solution is not only no optimal, but also possibly violates
the constraints for the real system.P.D. Roberts > first
presents an algorithm of dynamic integratd system opti-
mization and parameter estimation( DISOPE) for nonlin-
ear system where the model-reality differences exist. The
algorithm has been successful in solving many simulation
problems[3”5] . However, convergence analysis of the al-
gorithm has never been published and to the best of the
authors’ knowledge the not trivial sufficient conditions

for convergence have never been derived. In this paper,

we present an extension algorithm of dynamic integrated
system optimization and parameter estimation based on
thel time-variant linear quadratic problem for nonlinear
system where the model-reality differences exist. We
give a sufficient condition ,under this condition, the so-
lution of the algorithm converges to the real optimal so-
lution in spite of model-reality differences. The imple-
mentable conditions of the algorithm are emphasized.
Simulation example illustrates the efficiency and applica-
bility of the algorithm.
2 DISOPE approach
Consider the real optimal control problem(ROP) , with
given initial conditions
minl$(x(1)) + | “L* (e(0), u(0) 1) dt]
{ u(t) 5 ( 1 )
s.t.x(t) = £ (x(t),ul),1),x(2) = x
defined over the fixed time horizon ¢t € [ ¢, tf] , where
(1) € R"and u(¢) € R™ are the continuous state and
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control vectors respectively. $(x(z;)) is a given termi-
nal meausure, L* (-,
sure function and f* (-, «, -) represents reality. It is as-
sumed that the mapping f* and L* are rather complex,

, *) is the real performance mea-

and as a consequence, we have at our disposal the time-
variant linear model and a quadratic performance func-
tion . So, the following model based optimal control prob-
lem{MOP)is considered.

min{427(1) @x() + jf[ufu)R(t)u(z) +

2" (£) Q(#)x () + 2y(¢)ldi}
{x(t) = A(e)x(t) + B(t)u(t) + a(2),
s.t.
x(2) =
(2)
where a(z) € R", y(t) € R’ are considered as continu-
ous shift parameters.
Define an expanded optimal control problem ( EOP)
which is equivalent to ROP;

minl 5271 @x(ty) + 5| Tu (D R(u(s) +

x5 () Q(e)x(e) +27(e) +

rlluCe) —oCe) 124yl 2(2) - 2(2) | 21de},
x(t) =A)x(t)+ B()u(t)+ a(t),
x(29) = %,

f*(z(t),v(t),t) =

A(t)z(t) + B(t)v(t) +a(t),

S LD (2(2),0(2) 1) = (3)

%(v’(t)R(t)v(t) +

(1) Q(e)z(t) +27(2)),

Lu(t) = v(t), x(t) = 2(z)

where z(¢) and v(¢) are introducted to separate the state
and control variables between the optimization and pa-
rameter estimation problems . The terms proportional to r,
and ry are introduced as convexification terms.

Application of the maximum principle for optimal
control to (3), produces the following subsets of the
hecessary optimality conditions;

x(1) = A(e)x(e) + B(t)u(t) + a(t),
p(t) = - Q(t)x(t) — A()p(e) + B(t),
u(t) = - R-1(e)(B*(2)p(¢) - A(2)),
%(ty) = xg, p(t) = Ox(1p),
«(1) = f*(2(1),0(8),8) - A(1)z(2) = B(£)v(1),
(5)

(4)

A1) = [ BQ) -5 m] p(1) + R(t)o(r) - —’(

) = [ 4) - Tﬁ] p(t) + Q(1)=(1) - ;"m
(6)

v(t) = u(e), z(t) = x(t) (7)

where Q = Q + r,I,,R = R+ rI,,,p(t) € R"is the
costate vector,and A () € R™,8(t) € R are modi-
fiers. P(¢) is introduced to separate the model-based
optimal control problem and the modifiers calculation.
Optimality conditions (4) are satisfied by solving the
modified model based optimal control
(MMOP) ;

min 3 x<tf>¢x<tf>+j R OLIOMOR

problem

2%(2)Q(e)x(e) +27(s) +
rilluw(e) = o) N2+ rpll 2(e) = 2(2) |2 -
2A7()u(e) - 28°(¢)x(e) Idet
{a’c(t) = A(t)x(t) + B(2)u(s) + a(2),
s.t.
x(to) =

(8)
under the specified parameters a(z),7(t), specified
modifiers A (), 3(t), and specified z(z),v(¢). Let

p(1) = G(1)x(e) + g(2). (9)
From (4)and (9), the solution of (4) can be obtained
by the following Riccati equations;
G(t) = G(¢)B(t)R(t)B*(2)G(1) -
A (1) G(t) - G(1)A(r) - Q(1),

g(t) =- A () g(t) - A"(t)a(t) +
G(t)B(t)R'(¢)B (1) g(t) +
G(:)B(t)a(s),

C(tf) = @, g(tf) =0

(10)
where G(t) € R™", g(1) € R" .

The above analysis gives rise to the following algo-
rithm of DISOPE based on the time-variant linear
quadratic problem.

Assume that A(t),B(t),Q(t),R(t) and R'(¢)
are known and L*,f* and their derivatives are com-
putable.

Step 0° Compute a nominal solution u°(¢),x%(z),
p°(1),1etz°(2) = 2°(¢),v°(¢) = u°(s),P%(¢) =
p°(¢) and i = 0.

Step 1° Compute the parameters a’(¢) which satisfy
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(5). From (4),we have
0 i i N

B'?te)pZ Use (6) to compute the modifiers A*(z), [x‘(t)] AG)  — BOR-() B

(). : = . .

. , ) . - N _ AT
Step 3  With specified o' (), 7'(£),A°(2), F(2), pi(t) A.Q(t) (t)
. 4 t ) . ‘

i.e [t(i,.tf], sAglve the MMOP defined by (8) to obtain [Ti( ) e By () + g5 (1) (12
HORIONIO) | pr(e)

Step 4° A simple relaxation method below is em- where ¥ (¢) = [o/(¢)",#(¢)",p'(2)"]" and

ployed to satisfy (7).
o) = o' (¢) + k(e () - o (L)),
20) = 2(0) + k(2 () = #(2)), (11)
P = pi(e) + k,(p'(e) - p'(1))
where k,, k,, k, € (0 1] are scalar gains. I v'*!(1) =
v'(t), t € [to,t;], within a defined tolerance, stop,
else let i = i + 1, continue from Step 1°.
3 Convergence and optimization analysis of
the algorithm

Fristly, we make the following assumptions:

Al The optimal solution for ROP given by x " (¢),
u* (t) exists and is unique in the time interval [ to, /],
where ¢, is a specified constant.

A2 f*(x(t),u(s),t) is continuously differentiable
function of x(¢),u(t). L* (x(¢),u(t),t) is continu-
ously differentiable function of x(¢),u(t).

A3 A(t),B(t),Q(t),R(t) are all continuous on
the interval ¢ € [ g, t;], and R7'(¢) are all bounded.

Remark 1 Assumption A3 guarantees the existence
of the solution of MMOP(8)6).

3.1 Optimization

Theorem 1 Under the assumption Al ~ A3 and as-
suming the convergence of the algorithm, the converged
solution of the algorithm satisfies the optimality neces-
sary conditions of the real optimal control prolbem de-
fined by (1).

Proof From the Maximum principle!™ ,and the
above derivatives of the algorithm, the conclusion is
readily obtained.

3.2 The algorithm mapping

Without loss of generality , we will consider the special
case of @(-) = 0and ® = 0. The transition from itera-
tion £ to iteration i + 1 of the algorithm can be expressed
in terms of the equations of (4),(5),(6) and (11).

B [rlB(z)R(t)‘l 0 0]
Lo 0 rl, 01

) g1(y' (1))

‘(1)) = . : 13
iy [gz(y‘(t)) (
g1(y' (1)) = B()R(1)7'A' (1) + (1),
g(y' (1)) = B(1).

Here g(y'(t)) represents the model-reality differences.
The solution of equation (12) gives as:
' (t)
= (e, t)[ ] ¥(t,7)(Hyy'(z)
[p;(t)] L5y J ALY
g(¥'(z))dz, p'(t) = 0 (14
e (e, 9) §012(t,t0)]

where Y(i,t,) = [
’ §021(t,I0) @22(5,%)

@1(t, 1) . . . .
is the transition matrix relative to the vectc
902( tyto)
[ (1)
i)
By using the transversality conditions, from (14),w
obtain

[fc"(t)] [#x(t tf,to)]

I;i(t) (t lf,to)
§912(t,t0) )
[wmhmJ%ﬂ%mV
J;f¢2(tf’f)(H1yi(T) + g(y'())dr +
fw“ﬂﬂm¢h>+a¢u»mr
(15
where

pa(tstpytg) =
ety o) ~ 9012('3,to)§0521(tf,t0)§021(5f,t0)’
w(tytrytg) =
oult, ) - §022(i,ﬁ0)§02_21(5f’ t0) o (s 20) .
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From (4) we get

~p: . [ )
u' (t) = p,(t,t,t0) %0 + R“BT(t)gozz(t,to)qu‘zl(tf,to)Lfsoz(tf,r)(Hly’(r) +
0

§(7 () - BB 9ot 0) (Hyy () + g (e)))de 16)

where pa(tstrste) = = RTV(e)BT(e)p, (e, 17, 80).
Combining (15),(16) , we obtain

y(£) = pu(t, 15 00) %0 —J:/\Q(tytf"[,to)(Hlyi(T) + g(y'(r)))dr + Hyy' (1) + d(¥* (1)) (17)

where
1, (tstrto)
wtryst) = | maltstno) |y p(ytonT) = o2 (17, 10) @2 t7, 7))
#p(t 275 20)
[ - BB enlt )7y, 10,7) + R B (Dgale, 7)
eultst0)7(tst0,7) = @1(t,7) LT <L,
100, tt0) =1 en(tsto) (s to,7) - ¢3(t,7) -
[ = R BY(4) on(t,10) 9(tss 10, 7)
e, t0) 7(ty, b0, 7) vt T <Y,
L on(t,20) 7(ts, 89, 7)
nR(¢) 0 0 R1()Ai(1)
"H, = 0 0 0 ,d(yi(t))=l: 0 }
0 0 0 0
From (11) and (17), the algorithm mapping is ob- A s = V30T,

tained as follows
.V.H(t) =K_/;/(t) +(12n+m - K)}}(t) =

Theorem 2 A sufficient condition of the conver-
gence for the algorithm mapping (19) is given by the

Kt 17,10) —Kjtfﬂ(t,g«,r,to)(ﬂw"(f)'f following expression
LO
' ) (wl(tf,to) + hzwz(tf, to))(tf— to) +
g(}’t(.‘l')))dr HKHy) +Dhnom -K)y (1) + khy+ | KHy + I - K| =06 < 1 (21)
Kd(y (+)) where hy and h, are defined by (20), K and H, are de-

(19 fined by (19),(18), and

where K = block diag{kvlm, kzInskan}- {wl(tf,lo) = sup sup ] || KQ(t,tf,r,to)Hl || .

3.3 Convergence of the algorithm - S U ANIS R
The following additional assumption is required.

A4 The function g(y(z)) and d(y(¢)) defined by

wz(tf’ to) = tés[ltlpt] r
0'f

es[ltlol,):f] | KQQt,4,7,10) | .

(13), (18) and they ‘are I'Jipsc%ﬁtz continuous for all Proof Fiom (19) we have (22)
y(2),t € [t,¢r], with Lipschitz constants h; and h, 7 ;
respectively, that is }’t (t) = ¥ (t) =

I g(y(2)) - (¥ (N |l < thm(l,tf,r,to)(Hl(yi(f) _

; i-1 f

’|l|1ll<yi(<zt)>>_ yd((yi:llt,))ll < @ y71(2)) + g(#(x)) - g(y"'(x)))dr +

b, || ):'(t) ~ () | h (KHy + Doy - K)(¥' () = ¥ 1(2)) +

SR ’ K(d(5 (1)) - d(y=())). (23)

Where [l y(¢) | = sup [ y(e) I, : _
t€ L1g ;] Taking the norm for (23) ,and using the properties of



norm, we obtain

|7 -y || <
IRt 0 () - 7)1+

17 K01, (6P (0)) g ez I+

I (KH, + DLgyar - K)(¥(8) = 7D | +
Il K(d(¥(2)) - (" NI
From (20),(21),and (17),(19),we get
Iy4() - Yl <
{(w1(tf,to) +h2w2(tfvt0))(tf - ty) +
khy + || Ky + T~ K[ ¥ (2) = 71D I
Therefore, if condition (21) is satisfied the algorithm
mapping of (19) is contractive mapping, and then
{'(t)} converges uniformly.
4 Simulation study
Consider the real optimal control problem as follows

%f:} HaCe) 1%+ 1 ule) 13)de

0
-2-5t -3

2

sta(e) = | {_ij(t)+

Optimal states x(¢)

error

05 5 10 15
interation
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w1 (1) xy(2)
2y (8) g ()4’

(%) + 0.5x(0ute) + |

x(0) = [1 1]%.
Model-based optimal is chosen as the following form

%Jff IxCe) 1%+ 1 ue) | %)de

. x(t)+

.t t =[
snw) =]l 5 s _3_ 2

[?]u(t) i

x(0) = [1 1]%

Using MATLAB to make simulation test, choose erro
precision as eps = 10™%, sample period as 0.02, Q =
I, R = 1 and relaxation factors as k, = 0.5, k%, = k, =
1. By 12 iterations the algorithm converged, the optima
state and control curves, error curve and performance in
dex are shown in Fig. 1.The iterative number of the al
gorithm is 5 times less than of [4]. Therefore, the algo
rithm can reduce the number of iteration.

0.5
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s —05
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0 5 10 15
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Fig. 1 Optimal states, optimal control,error and performance index curves
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