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Linear Systems with Multiple Time-Varying Delays *
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Abstract: This paper presents the sufficient stability criteria for single and composite linear systems with multiple time-
varying delays respectively. The results are derived by using Razumikhin-type theorem together with an algebraic inequality
technique. It also provides some approaches for determining the free parameter matrices and scalars in the established criteria.
The obtained criteria do not depend on the quantity or derivative of delays. Therefore, they are suitable for systems either with
time-varying delays or with constant delays or without delay. Finally, some examples and remarks are given to illustrate the ap-
plications of the proposed methods and to compare the obtained results with the existing ones in the literature.
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Nomenclature

R" : real vector space of dimension n ,

R"*" : real matrix space of dimension n x n ,
s transpose of A € R"*",

A(A) : eigenvalue of A € R™*" ,

An(A) : minimum eigenvalue of A € R**" ,
Ay(A) : maximum eigenvalue of A € R " ,

A > 0 symmetric and positive definite matrix,

| x|l : euclidean norm of x € R || x || =
(xTx)12,

Al : induced norm from || x|l : [ Al =
[An(AT4)]72,

#(A): matrix measure of A € R™";u(4)
0.52(A” + 4),

Re(A(A)) : real part of eigenvalue of A € R"¥",

I,: n x n identity matrix,

Y : for all.
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1 Introduction

In recent years, the stability of time-delay systems has
attracted the attention of many researchers. There have
been many sufficient stability criteria for various time-
delay systems in the literature. All of the existing suffi-
cient criteria usvally include some free parameter matri-
ces and/or scalars. Generally speaking, the different
choices of these free parameter matrices and/or scalars in
the criteria may give different results. The problem is
how to choose these free parameter matrices and/or
scalars so that the least conservative results can be ob-
tained. So far, many researchers have been seeking vari-
ous methods of reducing the conservativeness for their
sufficient stability criteria, see, for example,[1 ~ 11] and
references therein.

In this paper, we establish delay-independent stability
criteria for single and composite linear systems with
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multiple arbitrary unknown and time-varying delays by
using the Razumikhin-type theorem!'?) together with an
algebriac inequality technique (see Lemma 1 in the next
section). We also discuss how to choose appropriately
the free parameter matrices and scalars in the established
stability criteria and provide some methods for determin-
ing these free parameter matrices and scalars so that as
less conservative results as possible can be obtained. The
paper is organized as follows: the stability criteria for the
systems under consideration are derived and the methods
of choosing the free parameter matrices and scalars are
provided in Section 2, four examples and some remarks
are given in Section 3 to illustrate the proposed methods
and to compare the obtained results with those in the lit-
erature. The conclusion is given in Section 4.
2 Stability criteria
2.1 Single system with multiple time-varying delays
Let us consider a single linear system with multiple

time-varying delays as follows:
2(1) = Ax(1) + O Bt - 7(8)), t = 0,
k=1

x(t) =¢(2), 1€ [-r,0]
where x(¢) € IR" is the state vector, A € R"*" and B,

€ R™" are constant matrices, 0 < 7,(t) < 1 < ® de-

(1)

notes arbitrary unknown and time-varying delay, r > Ois
a positive number, and ¢ (¢ ) denotes a continuous vector-
valued initial function on ¢ € [ - r,0]. We assume that
A is stable. Then the Lyapunov equation
PA+A™P =-Q (2)
has the unique n x n symmetric and positive difinite so-
lution P , where Q is an n x n symmetric and positive
definite matrix.
Lemma 1% For any positive constant ¢ > 0 and
any constant matrix T € R™*™ ,we have

2uTTy < eu"TD' T u + e 0" D,

u € R*,v € R" (3)
where D € R™*™ is a symmetric and positive definite
matrix.

Theorem 1 System (1) is asymptotically stable if

A, (€0 - 2mP > BP'BIP - P) >0 (4)
k=1

where P > O and () > O satisfy the Lyapunov equation
(2) and e > 0is a positive number.
Proof Let

V(x(t)) = ex™(2) Px(t) (5)
where P and ¢ are defined as in (4). Along the trajecto-
ry of system (1) and by Lemma 1 and (2), we obtain

V(x(1)) =

2ex™(1) PAx(1) + 26x7(0) P> Bt - (1)) <
—ex (1) Ox(2) + ezmxT(t)PinP'lBIPx(t) +

m 10 x7(¢ - 7,(£)) Px(t - 7,(1)). (6)
k=1
Note that (5) and the following Razumikhin condi-

[12]:

V(x(s + 8)) < qV(x(s)), s € [0,%),

v €E€[-r,0]l,qg >1 (7
imply
0 <gx™(s)Px(s) -

m'lixT(s — 7,(s))Px(s - 7, (s)) (8)

where ¢ > 1is a constant. By condition (7) and (8),
we further obtain at ¢ = s

V(x(s)) <

- xT(s)(eQ - eZmPZBkP'lB};P - gP)x(s) <
1

tion

— 2,,(e0 - &2mP > B, BIP — qP) || x(s) || 2.
k=1

(9)
If condition (4) holds, then there exists a constant ¢ > 1
satisfying

p = An(eQ — e2mP > B,P"'BIP - qP) > 0
k=1

(10)
such that V(x(s)) < - p Il x(s) || 2. By Razumikhin-
type theorem[ 12, Chapter 5, Theorem 4.2] ,
proof.

Remark 1 As mentioned in the introduction, the dif-

ferent choices of the free parameter matrix @ and the

we complete the

scalar ¢ in the criterion (4) may give the different upper
bounds. Therefore, it is more meaningful to find an ap-
proach of choosing appropriate Q and e so that the maxi-
mum robustness bound can be obtained. To do so, we
propose an approach by solving following minimization
problem;:

min O{Am(eQ —2mP> B, 'BIP - P)} >
>0,e> k=1 :
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e >0 (11)
where P > 0 and Q > O satisfy the Lyapunov equation
(2), € > Ois a positive number and e is a fixed positive
number. But as we know, A, (U;) = A,(U,) does not
certainly mean U; = U, for U; > 0and U, > 0. In fact,
an n x n symmetric and positive definite matrix U €
®™*"has n(n + 1)/2 free parameters and the problem of
7" = A, (U) with one fixed number 7™ has infinite so-
lution U* > Ofor n = 2 case. Obviously, the choice of
Q" and ¢* to minimize the problem (11) is not u-
nique!'®). Besides, as problem (11) provides n(n +
1)/2 + 1 free parameters, this implies that if there exist

solutions Q* and ¢* to problem (11), we must have
A, (e* 0" = (*)*mP > BP'BIP - P) = ¢ >0,
k=1

where P > 0 is the solution of the Lyapunov equation
(2) with Q* > 0. Now,Let e = 0.0001 denote the
tolerance. Then, criterion (11) is better than (4) be-
cause the conservativeness in criterion (4) has been re-
duced as less as possible and (11) also provides an ap-
proach for determining Q* and ¢ *. The problems like
(11) can be solved by using some well-known optimiza-
tion tools, such as MATLAB Optimization Toolbox
which have been used worldwide .

If considering system (1) with the structured perturba-
tions as follows:

B, = Bi(t)E,, k =1,2,-,m (12)
where E, € R"*" is a constant matrix and (,(¢) is the
time-varying uncertain parameter. We have the follow-
ing corollary for robustness stability bounds.

Corollary 1 System (1) with the structured per-
turbations (12) is asymptotically stable if

SIR(1) < max {md,(eP~2QPV2 -
k=1 Q>0,e>0

e2mPV > EPEPY))} (13a)
k=1
forall t = O, or
| B(¢) | < max {AV2(eP-12QP12
@>0,e>0

EmPY2 > EPVEPY) )k = 1,2,,m
k=1

(13b)
for all ¢+ > 0, where P > Oand Q > O satisfy the Lya-
punov equation (2) and ¢ > 0 is a positive number.

Proof With a similar proof of Theorem 1, we start
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from (6) and obtain
V(x(t)) <— ex"(2) Qx(t) +

ezmxT(t)PZm: EP'EiPx(t) +
k-1

m'lz'j:ﬁi(t)xT(t (1) Pa(s = (1))
(14)

Then, condition (7) implies

0< qm'lzmlﬁi(s)xT(s)Px(s) =

m-lkzmlmmms P PR s ST
(15)

where ¢ > 1is a constant. By condition (7) and (15),
we can further obtain at ¢ = s

V(x(s)) <

- exT(s)Qx(s) + ezrrmT(s)PiEkP’lE{Px(s) +

k=1

™ ST Pa(s) <
~ 2 [ P2 (eP72 QP72 - EmP?>) EPEPV -
™ AL P | () 17 =

— A [P(eP12QP"12 _ mP? Y E,PELPY? -

k=1

am SEG I () 17 <
= A (P)An(eP™2QP - mP?S] EPELPV) -

o BT 2() 112 (16)

If (13a) holds for all ¢+ > 0, it also holds at ¢ = s.
Then, there exists a constant ¢ > 1 satisfying
w =A,(e*P1V2Q* P12 _

(e* ?mP? D EPETPV?) -

k=1

qm’liﬂi(ﬁ >0 (17)
such that V(x(s)) <= A, (Pw |l (s) | 2, An(P)w

> 0, where 0* and ¢ * are the solution to the maxi-
mization problem (13a). Condition (13b) can be easily
proved by the same procedure as above. According to
the proof of Theorem 1, we complete the proof of this
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corollary . qV(x(s)) =
2.2 Composite system with multiple time-vary- il
_— v P g>ex7(s) Pai(s),s € [0,0),
ing delays =i

Now, we consider a composite linear time-delay sys-
tem consisting of N interconnected subsystems as fol-

lows;
N
5i(t) = A (1) + 2 A (- 75(2)),
j=1
i=1,2,,N (18)
where x,(t) € R’”,EN

i=1
stant matrices with appropriate dimensions, and 0 <

(1) < r < % denotes arbitrary unknown and time-

n; = n,A; and Ay are con-

varying delay. We assume that 4; is stable for each i .
Then the Lyapunov equation

PA; + ATP; = - Q; (19)

has the unique n; x n; symmetric and positive definite

solution P; for each i ,where Q; is an n; x n; symmetric
and positive definite matrix.

Theorem 2 System (18) is asymptotically stable if

N
Am(eiQi - E%NPLZAUPJ_IA’ZP, - PL) > 0,
j=1

vYi=12,~,N (20)
where P; > Oand Q; > 0 satisfy the Lyapunov equation
(19) and ¢; > 0Ois a positive number.

Proof Let

V(x(t)) = ZeixRt)P,-xi(t) (21)

where x(¢) € R, P; is the solution of (19) ande; > 0
is a positive number. Along the trajectory of system
(18) and by Lemma 1 and (19), we obtain

V(x(t)) =Z[2€,~x?(t)P,-A,~x,~(t) +
2el(1) P25 Ayt - 75(1)] <
Zi:— eix?(t)Qixi(t) +

N
eNaT(2) P, > AP AP (1) +
i=1

g J

N 2558t - (1)) Prya = ()],

(22)
Note that (7) and (21) imply

N

V(x(s + 6)) = Zele(s +0)Pxi(s + 0) <

j=1

vee [-r,0],g>1 (23)
which yields
‘ N N
0 < qN‘IZx}‘(s)ijj(s) - N'IZx}-‘(s -
=i i=t

t5(8)) Pai(s — 7;(s)),q > 1 (24)
for all i ,where ¢ > 1is a constant. By using (23) and
(24) ,we further obtain at ¢t = s

V() < 230- #106) (e -
e%NP,.ZNI)AUP;IAgP,.)x,-(s) +
N6 ()] =
- #H5) (e -

N
e%NPiZI)A--P-IA?jPi) .
e

¥ J

x;(s) + gxT(s)Pu;(s)] <

N
- Z[Am(eioi - eziNPi ¢
i=1

N
S aPTATP, - qP) || x(s) 1171,
j=1

(25)
If (20) holds, then there exists a constant ¢ > 1 satisfy-
ing
N
pi = An(e; = €INP, 2 APT'ATP; - gPi) > 0
j=1

(26)
for all i such that V(x(s)) < - izr{}ip’N{/l,-} Il x(s) [12.
According to the proof of Theorem 1, we complete the
proof of this theorem.

Remark 2 The free parameter matrices (); and
scalars ¢; in condition (20) can be chosen by solving the
following minimization problem;
min {A; + A3 + = + Ayt = 0.0001 x N

Q‘.>O,si>0

subject to: A} = A,(e,Q; — €NP; +

N
2 APTALP - P) = 0.0001,
j=1

J

(27)
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where P; > Oand Q; > O satisfy the Lyapunov equation
(19) and &; > Qs a positive number.

Remark 3 It can be seen that the results established
in Theorem 2 have been derived without using the tech-
niques of the M -matrix or quasi-diagonal dominance.

"Remark 4
of Theorem 1, Corollary 1 and Theorem 2 all the results

It can be also seen that from the proofs

established in this section do not depend on the quantity
or derivate of delays. Therefore, the obtained stability
criteria are delay-independent and they are also suitable
for systems either with time-varying delays or with con-
stant delays or without delay.
3 Examples and Remarks
To show the superiority of our methods, we give in
this section four illustrative examples. All the free pa-
rameter matrices and scalars in the examples are chosen
by using the MATLAB Optimization Toolbox. Some re-
marks are also given to compare the obtained results with
the results in the literature.
Example 1 Consider a 2 x 2 time-delay system
{a&(z) = Ax(t) + Bx(¢t - z(t)), t = 0, (28)
x(1) = #(¢), 1 € [ r,0]
with
A=[—3 —2]’32[ 1 0.7313
1 0 0.7313 1
By (11), we obtain A,,(e* Q" - (e*)?PBP~'B"P -
P) = 0.0001 > with
N [1.7443 1. 6808
~ L1.6808 1.62561°
By Theorem 1, the system is asymptotically stable.
Remark 5
many different choices of Q * and ¢ * in Example 1. For
example, A,(e*Q* - (¢*)’PBP"' B"P _ P ) =
0.0001 > 0 with
N 0.9989 0.9962 .
Q" = , &* = 0.9988.
0.9962 0.9949
In the following examples, we only give one choice for
Q" ande” . '
Remark 6 For system (28), the following stability
conditions are established in [1,5,10]
[4a(Q)/2u(P)]
2| Tl It I [ (P) /2, (P) T2
PT'AT + (T7'AT)"P = -

e” = 0.6512.

As mentioned in Remark 1, there are

DBl <

(29)
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by Cheres et al.t .
i) I BIl <

71T [Au(P) /2, (P)]’
P(T AT + al,) + (T7'AT + al,)"P = - Q
(30)
where 0 < a < min{| Re(A;(4) I}, by Wu and
Mizukamil®! ; |
Q- P)
i) [ VB < T T2t T D P) an (Y
PT'AT + (T7'AT'P =- Q

(31)
by Xull), In (29) ~ (31), T denotes a similarity trans-
formation matrix. The maximum upper bound for
I Bl is || BIl * = 0.3246 by (29) with

) [1.6543 0.3095
¢" = 1o.3005 0.5787)"
1.5164 - 0.2854
“l_o.5536 1.1382 1°
| BIl * = 0.3246 by (30) with
. [2.0754 0.4453
¢ 0.4453 0.0956!°
2.0818  — 0.5049
-0.6875 1.6215 1’
and || B * = 0.3246 by (31) with
i [3.0851 0.2399
@ =10.2300 0.0151)"
0.7735 - 0.2730
“1_0.198 0.6432 1’
respectively. All of (29) ~ (31) give the same maxi-

1

T" = [ a* = 0.6660,

mum upper bound for || B || . Note that in Example 1
we have || Bl = 1.7313 and (29) ~ (31) do not
hold. This shows that condition (4) is less conservative
than (29) ~ (31) when more structure information of B
can be taken into account.

Example 2 Consider system (28) with

_ 1]
_21’
0 1.2
B=pE=pw|] ]
By (13b) , we obtain the robust stability bound | B(¢) | <
1.3838 with
or o [11:0167 21584

~ L2.1584 6.9280!°
If r(t) = 7 = 0, r is an arbitrary constant delay, a bet-

-2
i
0

e” = 0.7828.
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ter result is | B(¢) | < 1.39297 obtained by Xu in[ 10].
Example 3 Consider system (1) with m = 2 and

~2 0 -1
~1 -1 =4

10 1]
By = k()E, = k1(t){0 0 0y,
1 0 1-
0 0 0
By = ky(t)E, = k2(t)[0 1 0].
0 1 0

By (13a) and (13b),we obtain K2(e) + k3(t) <
2.8594 and | k;(t) | < 1.1957,i = 1,2, with

0.2170 - 0.0258 0.1061
Q" = [— 0.0258 100.0003 - 0.0859} ’
0. 1061 - 0.0859 2.1056
e* =0.57.

Remark 7 In [7],Chen et al. derive the following
stability criteria for system (1) with multiple constant

delays:
O N BBy |+ p(A)/ V' m <05 (32)
i) | LB B —1/Vm < 0; (33)
i) A0 RIT+1I R1)2] -1 <0,
R =[11,]"P[By"B,1; (34)
where PA + ATP = - 2I,. Now let 7;(¢t) = 7;,i = 1,2,
and
- 1.1956 0 - 1.1956
B, = 0 0 0 }
L_1.1956 0 - 1.1956

0 0 0
B,=|0 -1.1956 0],

Lo - 1.1956 0

in Example 3. We have || BBy [l + p(A) /N2 =
1.4984 > 0, || P[BB,] | - 1/42 = 0.0582 > O and
Ayl (I R1T+1 R 1)/2] =1 = -0.0622 < 0. Condition
(32) and (33) do not hold but condition (34) holds. Ac-
cording to Chen et al.l"] , the system with the constant
delays is asymptotically stable. By (11 ), we obtain

2
A, (e* Q" —2(e*)*P> BPT'BIP - P) = 2.225T x
k=1

107 > 0 with
0.1866 - 0.0009 0.0791
Q" =|-0.0009 100.0000 -0.1002},
0.0791 -0.1002 1.8261

Vol. 16

e* = 0.4019.
According to Theorem 1, the system is also asymptotical-
ly stable for the case where the delays are time-varying.
Example 4 Consider system (18) with N = 2 and

= ia = 0.2 0.0
T S PR P
10 0.1 0.1

| [0.27 071 [_7 2]
2 1 o o257 L1 sl

4 [0.1 0.7] A [1 0.5]

21 — 1 1 3 2 = 0 1 .
This example has been studied by Xu in[6]. By (28),
we obtain
/11’é + Az* = 0.0002 > O,
/\1* = /\,,,(el* Ql* = (61* )2NP1 i

2
> A4P7ATP, - Py) = 0.0001 > 0,

j=1

A7 = An(es QF - (5 )’NPy -
2
> AyP7IALP, - Py) = 0.0001 > 0
j=1
with
1.4729 1.1797)
1 = [ , €7 = 06869,
1.1797 1.0144
\ 2.0094 -0.3938]
Q2 = [ ] e; = 0.1303.
~0.3938  1.4048

According to Theorem 2, the composite system is
asymptotically stable.
4 Conclusion

The sufficient stability criteria for single and compos-
ite linear systems with multiple time-varying delays have
been derived by using the Razuminkhin-type theorem to-
gether with an algebraic inequality technique. The meth-
ods of choosing the free parameter matrices and scalars
in the established criteria appropriately have been provid-
ed. All of the obtained criteria are independent of delays
and suitable for the case where delays are time-varying
or constant ones. The illustrative examples and remarks
are given to show the applications of the methods and to
compare the obtained results with the existing ones in the
literature .
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