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Vibration Control of a Flexible Smart Beam
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Abstract; In this paper, the vibration control of a flexible cantilevered beam with collocated piezoelectric sensor and actu-

ator is studied. A dynamic governing equation of motion for the smart beam is derived and a linear feedback control law is pre-

sented. By using LaSall’s invariant principle in infinite dimensional space and linear semigroup theory, it is shown that imple-

mentation of the control results in vibration suppression provided that the distribution of the collocated sensor and actuator make

the stabilizable condition hold.

Key words: flexible structure; smart structure; vibration control

FIEE s RV R B
% 5
(o [ 23 B AR 15T e A v 428 th) TR B 5 B - b A, 100080)
I DF SR RS0 B0 JE o U 3R IS 50 B8 10 B A SRR 2 RS, B T 0 SR AOBO W T
R B, 960 T 95 2 L) LaSalle RS RO A b K BESIVASTE A T 24 RO O B0 25 79

R GAEBAR LI, BT ST A R 40 ] T R iR 3 .
KR R, HAREH; fRBEH

1 Introduction

In recent years, to fulfill the requirement of precise
pointing accuracy for large spacecraft, much effort has
been directed toward looking for smart structure,i.e.,
structures with highly integrated sensors and actuators,
which can be used to change the mechanical properties of
the structure. As of now, piezoelectric materials are most
often employed as sensors or actuators for smart structure
applications.

Research on smart structure systems using piezoelec-
tric materials was first undertaken by Bailey and Hub-
bard !/
bonded to one face of a cantilevered beam as the actua-

By utilizing a uniform layer of the material
tor, they implemented a control strategy using
Lyapunov’s direct method, and showed that vibrational
mode of the beam could be controlled based upon the
measurement of the angular velocity at the beam’ s tip.
Burke et. al.!?) showed that spatially-varying piezoelec-
tric film actuators distributions can be applied to control
all vibrational modes of flexible beams with nearly arbi-
trary boundary condition. Piezoelectric actuators were al-

so used as elements of intelligent structures by Crawly
and de Luis’® . As is evident from previous studies, nu-
merous researchers have only demonstrated the stability
of the proposed control algorithm by simulation and ex-
perimental results without severe theoretical analysis for
system stability .

In this paper,a dynamic governing equation of motion
for a smart cantilevered beam is derived by applying
Hamilton principle, and a linear feedback control for the
smart beam is presented. The main result of the paper is
that it is shown that implementation of the control results
in vibration suppression provided that the distribution of
the collocated sensor and actuators make the stabilizable
condition hold.

2 System models

Fig. 1 shows the structure of the smart cantilevered
beam. The actuator and sensor are layers made of piezo-
electric ceramic ( PZT) and piezoelectric polymer
polyvinylidene fluoride (PVDF) materials, respectively,
collocated to both sides of the beam. In Fig.1, k stands
for the thickness of the different layers of the composite
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beam. The subscripts s , b and a denote sensor, beam and

actuator respectively .

—| PZT actuator h
. — F 1 Ha
Substructure ! l_ Zh

PVDI Sensor b i

Fig. 1 The composite beam
Piezoelectric actuator is made based on the constitutive
property of the PZT material. When control voltage
V(x,t) is applied to the PZT material, the induced
strain ¢, in the PZT material is given by

p(es8) = 2V (x,0), (1)

where d3; > 0 is the piezoelectric field strain field con-
stant.

Suppose the bonding between the actuator layer and
the beam is perfect,i.e. , there is no shear lag layer ef-
fects on the beam. Then the bending moment produced
from the PZT actuator can be expressed as (for detail,
see[1]):

M(x,t) = ke, (x,t), (2)
where k, > 0 is a constant depending on the geometry
and materials of the beam.

For the development work, we assume that

V(x,t) = ¢ V(1) F(x), (3)
where function F(x) ,being the local width of the elec-
trodes covering both sides of the actuator, denotes the
weight function of the actuator. V(¢) is the input volt-
age to the PZT actuator layer as the control variable. ¢,
is a positive constant.

Substituting equation (1), (3) into (2) yields

M(x,t) = ¢V(t)F(x), (4)
d
where ¢ = ¢k, % > 0. Equation (4) describes rela-

tionship between the applied voltage and actuation of the
PZT actuator.

Piezoelectric polymer polyvinylidene fluoride (PVDF)
is also strain sensitive and relies on the applied strain to
produce electrical charge. This process is the reverse to
piezoelectric actuation. The amount of electrical charge is
proportional to the amount of strain induced by the struc-
ture.

For the case that sensor and actuator are collocated , we
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have that the function F(x) is also the weight function
of the sensor. Then the ouput of the sensor is given by

!
1) = k] FGug(e,0dz,  (5)

where u(x,t) denotes the transverse displacement of the
beam at time ¢ and position x along the beam length di-
rection. k, > 0 is a constant determined by the sensor
geometry , material and the capacitance between the elec-
trodes of both side of the sensor surfaces. The subscripts
(+).and (), denote spatial and time derivatives , respec-
tively .

We use the Euler-Bemoulli beam model to describe
the dynamical behavior of the beam. The kinetic energy
T and potential energy V of the structure including the
piezoelectric actuator and sensor are expressed as

!
T = %jo oui(x,t)dx,

V= %f:EiI[EIum(x,t) _ V(1) F(x) Pdx,

where [/ is the length of the beam, ETI is the effective
bending stiffness of the smart flexible beam and p is the
mass per length of the composite beam.

By applying the Hamilton principle, we derive that the
governing equation of motion for transverse vibration
u(x,t) can be written as
puy(x,t) + Elug,,(x,t) - cV(¢)F,(x) = 0,
O0<x<l,t>0
Ju(0,t) =0, u,l0,t) = 0;

Elu,(1,t) = ¢V(t)F(1),
Elu,(l,t) = cV(t)F.(1).

(6)
3 Control law:design and analysis
Our goal is to suppress the structural vibration of the
system described by equation (6) using the input voltage
V(t) to the PZT as the control variable. In order to
complete the mission, we design the following control
law:
V(1) = - KI(t), (7
where k is a positive’ constant.
Define the function space % as
HF = {(u,v)" | v € H¥0,1),v € L*0,1)},
where the spaces 12(0,1) and HE(0,1) are defined as
follows

L*0,1) = {f;[O,l]—»]R{Iﬂdex < of,
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HE0,1) = |f € LX0,1) | f,f",.f* € LX0,1),
f0) = £'(0) = of,
for all positive integer k.
In 5%, we define the energy inner product as follows:

" ! x ),
(z,2) ¥ = %Jo[putut + Eluu, ldx, (8)

wherez = (u,u,)"€ H#,z = (u,u,)T € # The cor-
responding energy norm is given by

(2l a? ='%Jt(pu%+-ﬁﬂui)dx- (9)

We note that .# together with the energy inner product
derived by (8) becomes a Hibert space ([4]).
From (6) and (7), we see that the closed-loop system
can be written as follows;
z = Az, (10)
where z = (u,u,)". The linear operator .4; #—> F is
defined as

l
_E, c"’”‘p,,,mj F(x)u,dx)T.
P P 0

./‘Zz = (u,,

The domain of the operator % is defined as
D(A): =1{(u,v)" | w € H§(0,1),v € H}0,1)

Elu, (1) = - ckksF(l)j;F(x)um,dx,

. ! :
Bl (1) =~ obbFL(D)| F(x)ugyds}.
The energy function associated with (10) is defined by
!
BG) = 1200 1% = 5 (o2 + ER)ds.

(11)

Lemma 1 Consider the system given by (10).

Then for ¢t = 0, E(¢) is a nonincreasing function of time
t along the classical solution of equation (10).

Proof Differentiating (11) with respect to ¢ and us-
ing equation (10),we obtain that

X !
E(t) =J0(putu” + Eluu,, )dx =
!
Jofu,(— Elt — ckkF, (%) -
l
JOF(T)ude) + Eluu,, ]dx =
i !
EI(- Joutdum + Joumumdx) -
! [}
ckk,JOF(x) umdeO udF, =

- ckk, [J;F(x)umde < 0. (12)

Thus, we conclude that for ¢t = 0, E(¢) is a nonincreas-
ing function of ¢ along the classical solution of equation
(10).
Define an operator A on L*(0,1) by
Ap(x) = ¢""(x),
D(4) = {¢ € 10,1) | $(0) = #'(0) =
¢'(1) = ¢7(1) = 0}.
Let {A,,$,(x)}_; be the eigenpairs of operator A .
Then from[ 5], we have
i) A, = B with 8, satisfying
1 + cosfB,lcoshB,l = 0,

B, >0,-andﬁ,,—>°° asn—> @,

i) ¢,(x)= (coshﬁ,,x - cosﬂ,,x)—
coshf3,l + cosf,l, . )
sinh@,] + sinf,! (sinhBx — singy)
forms an orthogonal basis on L?(0,1) .
Assumption 1( Stabilizable condition)
function F(x) satisfies

F(z) € BO,DIf 1 ff.f" € 10, D},
{J;F(x)W’n(x)dx £0, n=1,2".

The weight

(13)

Lemma 2 Consider the system given by (10).
Suppose (13) holds. Let S denote the subspace of #
defined by S: = {z(t) € #IdE(t)/ds = 0,¢ = 0}.
Then z(+), the classical solution of equation (10)
which lies in S , satisfies z(t) = 0, = 0.

Proof Letz = (u,u,) be the classical solution of e-
quation (10) which lies in S . Then, from (12), we
have

puy(x,t) + Elug,.(x,t) = 0,

w(0,1) = u,(0,1) = w(1yt) = wue(1,1) =0,

0D<cx<l,

*]
| PO, ) = 0,
(

0 I
Al:[_ﬂA :I.
14

The domain of the linear operator A; is
D(A)): ={(u,u)" | u€ HY0,1),u, € H¥O,1),
U (1) = uy, (1) = O},
Then the system (14) can be rewritten as follows;
z2(t) = Ajz(1), z(0) = z (15)

(14)

Define
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!
WithJOF(x)um(x,t)dx =0, where z = (u,u,)".
It is well known that A; generates an exponentially de-
caying C semigroup T((t) on H#. For @ = (¢, e
¥, denote a, = (¢, 89 B = <77,¢">%,then we

have
Tl(l)@ B

(a, cos,/ E—I/\nt + By sin
& I El
> N pt
o

n=1
(B,cos A/ —‘El/lnt —a/ —EIAnansin ——EI/Int )é.
e © ©

Then, from (15) , we deduce that

u(x,t):i((u(x,O),Sﬁn(x))%cosAl %Iknt +

<u;(x!0)’¢n(x)>_'ﬂ . II(E!
NUAR i siny f o Aﬂt)‘ﬁn(x) )

Ay
£

ut(xvt):i(<ut(xa0)v¢n(x)>%cos/\/ %I/\nt -

%’An<u<x,o>,¢n<x>>%sim/ %’anmsn(x).
This implies that

0= J(I)F(x)uxxt(x,t)dx =

L 04,
[0

©

S PG () (,0), 8, (2))ir

cos\/—%T/\nt —%Jﬁﬁ’(x)#{(x)dx .
<u(x,0),¢n(x)>%sin\/%lt),

!
which means that JOF(x)sb,’[(x)dx(u,(x,O),

!
b)) and = o | PO $1(0)axCu(2,0),
$,(x)) 4 are the Fourier coefficients of the uniformly
almost periodic function 0. Hence for n = 1,

J':)F(x)ﬁ(x)dx(u(x,O),¢n(x)>% =

- /%IA,,J;F(x)M’(x)dx(ut(x,o),¢n(x)>% _o.

But from assumption ( 13 ), we know that

1
JOF(x)sﬁ,’[(x)dx » 0. Then we have

<u(x70)1¢n(x)>.%’ = <ut(x’0),¢n(x)>.% = 09
which implies u(x,0) = u,(x,0) = Oand E(0) = 0.
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Thus we have z(¢) = Ofort = 0.

From Lemma 1, by the Sobolev embedding theorem
and the argument similar to that used in[6], we can ob-
tain the following lemma ]

Lemma 3 The operator .%: D (4) C > gen-
erates a Co semigroup of contraction on # with (I -
%)~! being a compact operator for A > 0.

By Lemma 1 ~ Lemma 3, using LaSalle’ s invariance
principle ([ 7]) and linear semigroup theory ( [8]), we
immediately have the following result.

Theorem 1 Consider the system given by ([10]).
Then for 2(0) € D(_4%) ,equation (10) has a unique
classical solution z(¢). Moreover, if (13) holds, we
have lim,.o || 2(¢) || % = 0.

Consider two special cases of the expression of
F(x) ,we can obtain the following corollarys by verify-
ing (13) holds for these cases.

Corollary 1 Consider the system (10) with F(x)
= 1. Then for z(0) € D(.4), the system has a unique
classical solution z(#), which satisfies lim, .o Il 2(2) || %
= 0.

Corollary 2 Consider the system (10) with F(x)

2
= (l—_lzil Then for z(0) € D(.4), the system has

a unique classical solution z(:), which satisfies
lime || 2(2) | % = 0.
4 Conclusions

In this paper, an active distributed damper for a can-
tilever beam is designed and evaluated. A linear feed-
back control for the smart beam is developed using Lya-
punov’ s second method and the stabilizable condition for
the system is presented. The main result of the paper is
that based upon LaSall’ s invariant principle in infinite
dimensional space and linear semigroup theory, it is
shown that implementation of the control algorithm re-

sults in vibration suppression.
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together (3.3) with (3.4),o0ne gets
V(tg,®5us) = }imV(LO,T;u.:) =

}i{gV(to,T;u;) = %o Pxo. (3.5)
We proceed to prove V(tg, 0 ;us) = V*(ty, ). If
not, then
V¥ (tgs®) < V(tg,®3u%), (3.6)
thus, there exists a control u;, such that
}112 V(tg, Tsuy) = V™ (29, %).
But from (3.5),
}iIEV*(tO’T) = V(tg,®5u%),
so (3.6) implies
}_I.IE V(to, T5u1) < }_132 V* (o, T),
which demands that for sufficiently large T ,
V(to, Tsuy) < V' (ty,T),
by optimality, this is not possible. So we have proved

V* (tg,®) = EI (x™Qx" + u™'Ru™)dt =
lO

xo’Pxo < w0,
By lemma 2.3, limE | #* (¢) 1% = 0,i.e. if we take
{—»
u(t) = Kox(t) =- (R + D'PD)"Y(B'P +

D'PC)x(¢)in (1.1), then system (1.1) is stabiliz-
able, Theorem 1 is complete.

Remark 3.1
lustrate that stabilizability doesn’ t imply exact controlla-

One can easily give an example to il-

bility. Consider one dimensional stochastic system

dx = (ax + bu)dt + cxdW,

x(10) = xg,
when b = 0 , this system is always stabilizable (this can
be proved by simple computation) ,but by Theorem 3. 1
of [1],it is not exactly controllable because d = O .

Remark 3.2 In order to prove Theorem 1, we re-

late it with an optimal control problem, this method is
very useful in many problems, much application of opti-
mal control ideas can be found in [5].
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