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Abstract; In this paper, the “leapfrog” phenomenon mentioned by B.R.Barmish is studied. We generalized zero exclusion
condition to the degenerated parameter polynomials. And we got a revision of Kharitonov’ s theory and its following polytope

polynomials results.
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1 Introduction

There is a long-standing interest in robust control
problems involving structured real parametric uncertain-
ty . Kharitonov’ s paper[l] began to receive attention in
the control field in 1983, which was introduced by B.R.
Barmish in [2] . Important work includes Zero Exclusion
Condition!!), Value Set?] , Edge Theorem'®!, and Con-

[4] etc. All of these assumed that degrees

vex Direction
of the character polynomials of the systems are invari-
ant. So that the roots are continuously dependend on the
parameters. If the degrees are not invariant, the
“leapfrog” phenomenon mentioned by B. R. Barmish'®’
may occur. In this paper we give a general proof of the
continuous root dependence on its parameters of a degree
dropping polynomial in the sense of pointwise continu-
ousness. We also define the nonincreasing path of a pa-
rameter set. With these concepts we generalize zero ex-
clusion condition to the degenerated parameter polynomi-
als. And we get a revision of Kharitonov’s Theory and
its following polytope polynomials results.

2 Problem and main results

Consider the parameter polynomial

p(s,q) = 2 a;(g)s', ¢ € Q c R, (2.1)
where a;(q) continuously depends on q,i = 0,1,-,
n.If deg(p(s,q)) is invariant, every root s;(g) of
p(s,q) continuously depends on parameter q. It is the
basis of the standard Zero Exclusion Condition!!). If
there exists ¢° € Q such that a,(¢) = 0,i.e.deg(p(s,
¢*)) < n, degree dropping occurs. The standard results
of parameter robust control do not hold automatically.
There are many counter examples, among them is the fa-
mous “leapfrog” phenomenon in B. R. Barmish!®; if
p(s,q) experiences degree dropping, then as g varies,
the branches of the root locus can “leapfrog” from the
strict left half plane into the strict right half plane with-
out crossing the imaginary axis.

We have found that when degree dropping occurs, the
finite root | s;(q) | < o still continuously depends on
its parameter ¢. Thus we can generalize the Zero Exclu-
sion Condition to the degree-dropping polynomials. With
the help of the Rouché’s Lemma'S’, we can generalize
the root locus continuous dependence on parameter of
polynomials with invariant degree to the degree-dropping
case. We ought to claim that the continuity is in the point-

* This paper is supported by Laboratory of Systems and Control, Institute of Systems Science, Chinese Academy of Sciences.

Manuscript received Jan. 15,1998, revised Oct.5,1998.



438 CONTROL THEORY AND APPLICATIONS

Vol. 16

wise sense.
Theorem 2.1(Pointwise continuity) Given a fami-

ly of plynomials &
P=1ip(s,q):p(s,q) = D, a;(q)s,
i=0

(2.2)

where a;(¢) continuously depends on ¢,for i = 0,1,

g € Q is a connected set in R}

~+=, n. Then each finite root s;( ¢°) of p(s, ¢") continu-
ously depends on ¢ at point ¢° € Q.

Proof Let s;(¢") denote any finite root of p(s, ¢°).
We can choose ¢ > 0 small enough, such that in the
sphere region S, = {s: | s — 5;(¢%) | < e there is only
a single root (including multiple roots) of p(s, ¢%) and
no root on its boundary 7S, . Then

n

p(s,q) = Eai((])si =

0 + 2 (arle) - ai(g?))s

Denotes i}ai(qo)si by f(s), i}(ai(q) - ai(qo))si

by g(s,q), then f(s) and g(s,q) are analytic on the
closed region S.. Because f(s) has no root on the

boundary 38, ,0 = min | f(s) | is strictly larger than

zero. Since a;(q) continuously depends on ¢, there ex-
ists & > 0 such that

0 [«
Haile) = ald) <D (@ v o)
i =0,0,n  (2.3)

holds, whenever || ¢ - ¢° | < 8. Therefore, for any s
€ JdS., we have

g0 1= | 2 (ale) - alg®))s

<

i) I a;(g) — a; (%) 11 s 1<

n

3 ols |

o (n+ 1)1 si(qo) [+¢)t s
Dn =t
n+l ’
Thus, | g(s) | < o <| f(s) | is always valid on the

boundary 9S,. From Rouché’ s Lemma, we know that

f(s) + g(s,q) and f(s) has same number of roots in
the region S,. That is to say, for any ¢ € {q: || ¢ -

Il < &t,p(s,q) have n; roots (j- multiples root is

looked on as j roots, n; is the multiples of root S;(¢%))
which satisfies

| Sig) - Si(¢®) < e. (2.4)
In conclusion, each finite root s;( ¢°) of p(s, ¢®) contin-
Q.E.D.
Remark 2,1 This conclusion has no prerequisite on

uously depends on ¢ at point ¢° € Q.

whether a,(¢°) = 0 or not. That means p(s, ") could
be a degree dropping polynomial. ’

Proposition 2. 1 (Root locus of degree-dropping
polynomials) Suppose ¢(1),A € [- 1,1, ] is a con-
tinuous path and

kE, A =0,

deg(p(s,q(A))) =41, 1> k,A€[-1,0),
m, m > k,A € (0,1].
(2.5)

Then (I — k) roots of p(s,q(A)) vanish, when A —
0™ ; (m - k) roots vanish when A —0* . k roots continu-
ously depend on A at point A = 0. The vanished roots
move towards infinite, lll.r} | 5;,(A) I =+ o,

Proof The first two conclusions can be directly de-
rived from Theorem 2.3. In the following, we only prove
the third conclusion; s;(A) tend to be infinity as A — 0.

Proceeding by contradiction, if s;,(A) does not move
to infinity as A — 0* (0™ ),then3 M, > 0, such that
VA > 0( < 0) there exists a A * between 0 and A with
| s;(A*) | < My. Therefore we can choose a sequence
of A, converging to zero such that | s;(A,) | < M, hold
for h = 1,2,-+. Since {s;(A,)]}Z; are bounded, we
can find a sub-sequence of A, which, still denoted by A, ,
satisfies s;(2,) — s for some s;. Since p(s;(A,),
q(A,)) = Oforevery h = 1,2,++, let h—> » and we
get

0= ,}E}P(ﬁ(/‘h)ﬂ(/‘h)) =

fim 33 0,(q ()<l +
,grg;a,(quh»s{(xh) s

lim >3 (g a)sl(h,) - (%)
ga,.<q<o>><s:>f = p(s7 1 q(0)

where ( * ) holds because {s;(1,)}% %, are bounded and
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,}i‘g a;(q(44)) is equal to zero forevery j = k+1,"+,
n.Hence s is a root of p(s,¢q(0)) = 0. By the proof
of the Theorem 2.1, the multiple number of root s is e-
qual to the number of roots of p(s,q) = 0in a suffi-
ciently small neighborhood of s;* when q is sufficiently
close to q(0), which means the number of the roots of
p(s,q(0)) = Ois equal to p(s,q(2,)) = Owhen h is
large enough. But it is contrary to the assumption (2.5)
that the degree of p(s,q(1,)),m(1), is larger than k,
the degree of p(s,q(0)). Therefore the required result
is well verified. Q.E.D.

When A passes through zero point, there will be some
infinite roots to appear and then disappear. That is why
“leapfrog” phenomenon'®’ appears.

Definition 2.1 Path ¢(1),x € [27,a*], is
called a degree-nonincreasing path if for any given A,
Ay € [A7,2% ], deg p(s,q(R)) < deg(p(s,
q(11))) holds when 1, = A;.

Theorem 2. 2{ Generalized zero exclusion condition
A) Let D be a region in the complex plane C, and the
P =

polynomial family {p(s,q):p(s,q) =

Zai(q)si,q € Ql,where Q is a finite piccewise
i=0

connected set in IR'. And a;( q) continuously depends on
q for i = 0,1,-++,n. If there exists a D- stable element
p(s,¢") with the highest degree in &, and a degree-
nonincreasing path from ¢° to any ¢ € Q. Then & is
robust D- stable iff
Oggp(z,Q),VzEaD. (2.6)
Proof “=” Assuming Zis robust D- stable and we
must prove thatO ¢ p(z,Q), Y z € 3D. Proceeding by
contradiction, suppose that0 € p(z, Q) ,for some z* €
3D . Then p(z*,q) = Ofor some ¢* € Q; i.e.,the
polynomial p(s,q”* ) hasarootats = z* € 3D which
contradicts robust D -stability of &2
“«<"we assume that0 ¢ p(z, Q),forall z € 2D and
must show that is robust D- stable . Proceeding by con-
tradiction, p(s, ¢') is not robust stable for some q' €
Q. From the prerequisite, we know that there exists a
continuous function @:[0,1] = Q,such that ®(0) =
¢®,®(1) = ¢' and (1) is a degree-nonincreasing
path. So along the path from 1 to 0, degree of p(s,q)

can only increase, and additional roots may appear but no
root disappears. Theorem 2.3 guarantees that all m( <
n) roots of p(s,ql) will continuously change to the
roots of p(s,q°),as ®(A) from 1 to 0, denoted as
S;(®(A)),i =1, ,m.Since S/ (P(1)) ¢ D and
S (®(0)) € D hold, according to the continuity of
SH(®(A)), there must existad * € (0,1), such that
S (®(A1")) is on the boundary of D.Denote ¢* =
®(A"),z" = S/ (¢"), we have
p(z",¢") =0, z" €9D.
Q.E.D.
Along the degree-nonincreasing path ¢ (A ) in Theorem

It is the contradiction we seek.

2.2 the “leapfrog” phenomenon does not exist. That is

the reason why zero exclusion condition is still valid for

the family of degree-dropping polynomials.
Proposition 2.2  Suppose Z°is an interval polyno-

mial family 2 = {p(s,q):p(s,q) = D, qs',q €
i=0

Q},where Q = {q:q; € [¢7,47],47 =0,i = 0,1,
-, n} and Phas a stable element with the highest de-
gree. Then & is robust stable iff for any nonnegative fre-
quency w,origin z = 0 does not belong to the

Kharitonov rectangle, that is
0gp (jw,Q),

Proof Letp(s,q) = E[q{,qf]si. For the rea-
i=0

Vo=0. (2.7)

son that p(s, ¢°) has the highest degree, ¢° = 0, hence
¢ > 0. For any ¢ € Q, we choose the path from ¢° to
g in the fomof g(1) = (1 - 2)q° + A¢,A € [0,1],
the convex combination of ¢° and ¢,so ¢q(1) will al-
ways be in the set Q. And ¢%(1) = (1-2)¢% + Aq, >
0, for any A € [0,1). Thus,deg (p(s,q(1))) = n,
for any A € [0,1). Now, we can say the path g(1) is a
degree-nonincreasing path. The prerequisite of Theorem
2.2 is satisfied, and the Proposition is immediate .
Q.E.D.

With the help of Proposition 2.2, we can generalize
Kharitonov’ s Theorem!!%)to the degree-dropping case.
Theorem 2.3(Generalized Kharitonov’ s theorem )
An interval polynomial family &7 as Proposition 2.2 is

robustly stable iff its four Kharitonov polynomials
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ki(s) =q5 + qis + gfs® + qis® +
gis* +q55° + q¢s®+ 0,

ko(s) =q¢ + qfs + g35 + g3 +
gis* + q¥s + g5+,

ks(s) =q8 + qis+q3s" + qis’ + e
qu4+ q5'35+q6"36+"',

ki(s) =q5 + qis+ qis® + ¢5s° +

gist+ g+ qtst+ o
are stable.

Proof The proof of necessity is obvious. To establish
the sufficiency, we assume that the four Kharitonov poly-
nomials are stable and must prove that & is robustly sta-
ble. There must exist a highest degree element of & a-
mong k;(s), -, k4(s). And with the help of Proposi-
tion 2.2, we make use of generalized zero exclusion con-
dition A (Theorem 2.2) . The proof procedure is similar
to the originality Kharitonov’s theorem (see [5] for de-
tails) . Q.E.D.

3 Refinement and generalization

In Section 2 we have defined degree-nonincreasing
path, and we have generalized zero exclusion condition A
(Theorem 2.2) . But the theorem requires that there ex-
ists a degree-nonincreasing path from the stable element
in & with the highest degree to any element in &2 It
could not always be satisfied. So we need the following
theorem to include more general family &

Theorem 3. 1(Generalized zero exclusion condition

B) Let D be a region in the complex plane C, and the

n

polynomial family 7= {p(s,q):p(syq) = Zai((I)

i=0

s',q € Q1}, where Q is a finite set in R’, and a;(q)
continuously depends on ¢ for : = 0,1,:-,n.If Q
could be divided into finite piecewise connected subsets
Q1L with | Q) = Q. And if there exist a D- stable

k=1
clement p(s,¢") with locally highest degree in p(s,
Q1) , and a degree-nonincreasing path from ¢* to any ¢
€ Q. Then & is robust D- stable iff

0¢ p(2,0),YzE€aD.

Proof The necessity is similar to Theorem 2.2. We
only need to prove the sufficiency. Assuming 0 ¢ p ( z,
Q) ,for all zEJD,then for any k€ {1,2,+*, m]| ,0¢
p(z,0Q;),and all zEID. From Theorem 2.2, we know

m

p(z,Q,) is robust D- stable. And from Q = H Qx,we
know that Pis robust D- stable. Because for any ¢ € Q,
there exists a k< {1,2,++, m} such that ¢ € Q,,then p
(s,q*) is robustly D- stable. Q.E.D.

With Theorem 3. 1, we can deal with some specific
type of parameter uncertainties. Here we consider

P=1{p(s,q):p(s,q) =
2(a§q+ﬂ,~)si, q € 0}, (3.1)

where Q ¢ R is a polytope, a; € ' is a column vector
and §; is a scalar,for i = 0,1,--¢,n. We can also de-
note by conv {p(s,¢)l,¢,j = 1,+-,1 are the ver-
tices of polytope Q. Leta,(q) = a%g + B, = 0, and we
get

(3.2)
which is a hypoplane in space R’. Let IT = {§:alq + S,
= 0,q € ®'}. If Phas dropping-degree, then IT () Q
#« 9, i.e. , hypoplane II intersects polytope Q' (may only
tangent) . If Q is divided into two parts,each of which is
still a polytope . Dropping-degree will occur on the sur-
face cut by II. If there exists a D- stable p(s,¢‘¥),
¢ € (Q,/I) ,for each k = 1,2, we can choose a
path ¢(1) = (1 -1)¢"® + 2¢,A € [0,1], for any ¢
€ Qu,k = 1,2. Tt is clear that (1), A € [0,1), has
invariant degree. Thus ¢(A),A € [0,1], is a degree-

anigqr + "+ agg + B, = 0,

nonincreasing path. It is concluded as the following
proposition .

Proposition 3.1(Polytope polynomial family) =
{p(s,q):q€ Q1 is an polytope polynomial family,
where Q = convig',j = 1,---,1}. D is a region on the
complex plane. If the hypoplane I, defined as (3.2),
divides Q into two parts @, (), and there exists a D- sta-
ble element p (s, ¢'*,¢¥) € (Q,/II), foreachi = 1,
2. Otherwise, there exists ¢ € ((Q/II), such that
p(s,q®) is D- stable. Then Pis robustly D- stable iff

0 ¢ p(z,0Q) = conv{p(z,qi),j =1,-,11,
Vz&dD.

Remark 3.1 We can not obtain Edge Theorem!*"5]

only under the prerequisite of Proposition 3.1,
4 Conclusions
From the studied “leapfrog” phenomenon, we have im-

proved the fundamental settings of robust control of sys-
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tems with parameter uncertainty in some sense. Now we
can deal with polynomial family with invariant and vari-
ant degree in the same framework. There are still some
problems that need to be studied . One is how to divide a
more general parameter set ( to satisfy the prerequisite
of Theorem 3.1, and the other is under which condition
can Edge Theorem or even Vertex Test Theorem be gen-
eralized to the dropping-degree polynomial family.
Maybe more recent results could be reconsidered under

this general settings.
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(Continued from page 436)
6 Conclusion

In this paper, a new variable structure MRAC scheme
is introduced. It is shown that the new scheme is appli-
cable in the absence of SPR assumption. It is also shown
that the tracking error will converge, in a finite time, to

zero if n* = 1 and to a small residual set if n* > 1.
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