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The Realization for 2-D Singular Systems

Zou Yun and Yang Chengwu
(School of Power Engineering, Nanjing University of Science and Technology* Nanjing, 210094, P.R. China)

Abstract: This paper discusses the problems of realization of the 2-D linear shift-invariant singular general state-space
models (2-D SGM) with standard boundary conditions. A new realization approach to 2-D SGM is developed.
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1 Introduction
Two-dimensional (2-D) state-space models have been
extensively studied during the past decades. During this
period many 1-D state-space techniques have been gener-
alized to their 2-D counterpartsm 7). There are a few
papers such as [7] that have discussed the realization
problem of 2-D singular systems. However, the realiza-
tion algorithms there are based on series of relatively
complicated transformation and not very explicit in
form. In this paper, we have improved the correspond-
ing algorithm on the basis of some results in [3].
2 Realization
Consider the linear shift-invariant discrete 2-D systems
of the descriptor form
Ex(i+1,j+1) =
Aox(ij) + Ayx(i +1,5) +
Ax(i,j + 1) + Bou(i,j) +
Blu(i+1,j)+Bzu(i,j+1), (1a)
y(i,j) = Cx(iyj) + Du(i,j). (1b)
Where x € R", u € R™, y € Rl and E, A,,B,(k =
0,1,2),C and D are constant matrices of appropriate
dimensions. E is singular, and E,A,(k = 0,1,2) satis-
fies the 2-D regular pencil condition
det(z12,E - z)A; — 2345 — Ay) = 0. (2)
The system (1) is also called 2-D singular general state-

space model (2-D SGM). The following standard form
gives the boundary conditions for (1)

x(O,j),x(i,O),fori,j =0,1,2,--. 3)
In [4] and [5] Kaczorek proposed a significant notion
called the admissible boundary condition, and proved
that the system (1) has a solution only if (3) is admissi-
ble. The transfer function matrix of (1) is defined in
(3]:

G(z1,23) = ClzynE - 21A) - 24, — Ag] 7! -

[By + 1B, + z,B,] + D. (4)
Definition 1 The matrix group
{E,Ag,A\,Ay, By, B\, B,,C,D]} (5)

is called a realization of a given transfer function matrix
G(zy,z,) if they satisfy the equation (4) .

Now, let
G(zl,zz):N(zl,zz)/d(zl,zz)E]Rlxm(zl,z2) (6)
be an arbitrary rational function matrix, where N(z,
z) € R>*™[2,,2,] is an | x m polynomial matrix in
Z1, 2y and

n'l Ilz ] ]
d(z1,2) = D) D0 d; 2. (N

i=0 j=0

with dio-"z s« 0 and d"l'jO s 0 for some iy and j.
Definition 2!°) The transfer function matrix G(z;,
z,) is called proper if d(z,, z,) is acceptable
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(i,e., d, 0, # Dadforicis !, l<j<sm,
degzkni,j(zl,zz) < n, k= 1,2, (8)

Here n;,;(z1,2,) are the elements of N(z1,2,), and

deg,hn(zl ,2,) denotes the degree of n(zy,2) with re-

spect to z;, k = 1,2.

Obviously, the matrix (4) is proper if and only if £
is nonsingular, i.e. the system (1) is a regular system.
Let A, z be the real numbers such that

d(= A, - p) #0. 9)

And let
G(wy,wsy) A G(ws! - Aywil = p) = G(zy,2,).
(10)

Where w; = (2, + )™y = (21 + A)7h

Lemma 1 Let G(z;,2,) and G(w;,w,) be given
by (6) and (10) respectively. Then if (9) holds,
G(wy,w,) is always proper with respect t0 wy, wz.

Proof Note that G(w;,w,) can be re-written as
C(wy,wy) = N(wp,w)/d(w,0).  (11)
Where ‘

N(wnwz) S

o N(w;! - Aywil = p) € R™ [ wy,wy],

d(wy,wy) =

whoPd(w;! - Aywil - p) € Rl wy,wy].
and w{™w;™ are the least common denominator of
d(w;' = A, wi! = 4) and the elements in N(wi' -2,
wi' — u). Obviously, the highest possible degree of
N(w;,w,) is (m;,m,), and the term with highest de-
gree in d(wy,wy) is d(— A, - p)wiiwl2. Therefore
by (9) and definition 2 the proof is completed.

Thus, by Lemma 1 and the well-known realization
theory of 2-D regular systemsm there is a regular real-
ization for G (w; ,w,) as follows:

C(wy,0) = Clojw,I - wiA; — wydy - Aol
(By + w By + wBy) + D. (12)

Lemma 2 There always exists a realization (12)
with By = 0 for G(w,w,) in (10).

Proof In fact, let

Ao

I
o
=]
-
—
P
Oo)
<
—
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A, A, B A
2 0 0 A2 BO
A2 = In 0 0 or [ } N
0 0
0 O
B i
B _ ; B,
BO B 0, B1 = 0 or [ I ]9
I, "

¢ =1[¢,0,0] orC = [C,0], D = D,
respectively. Then by (12) we have
G(wyywy) = Clwywa] - wiAy - wyAy — Ag)™'
(w,B, + wyB,y) + D.
This completes the proof.

Theorem 1 let 2 € IR"*" be an arbitrary inevitable
constant matrix and 4;, Ej, ¢ and D be defined by (12) .
Note that by Lemma 2, we can always claim that By =
0. Then

|E,Aqy,A;,Ay, By, By, C, D} (13)
is a realization of G(z,z,), where

E=-0"',C=2¢C,D=D, (14a)
Ao = Q (Apho + Ay + gy - 1), (14D)
A, = QYA + 4Ay), (14¢)
Ay = 07 (Ay + M), (14d)
By = Q7 (AuBy + ABy + pBy), (14e)
B, = Q7 Y(By + pBy), (14f)
B, = 0°(B, + ABy). (14g)

Proof By (12) and (14) it is easy to see that
ClzinkE - 214y - 2Ay - Al
(By + 1B, + 22B3) + D = G(wy,wy). (15)
With w; = (21 + )y = (20 + A)~}. Therefore,
combining with (10) we complete the proof.

It is very interesting to note that

071 = AuE + M| + pAy - Ap. (16)
This coincides with that in [3].

Remark Usually, it is very convenient to realize a
regular transfer function matrix (11) directly as a Rouser
model or FMM TI'7) . In this case Ag = 0 and By = 0.
Such a realization is always available for an arbitrary
matrix (11)17Chapter2]l. Ag 4 result of the realization of
(13), Theorem 1 has a special form with E = 0.
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3 Conclusion

A new realization algorithm is proposed on the basis
of the approach for computing the transfer function ma-
trix for 2-D SGM in [3]. It is simpler and more explicit
than that in [7]. The minimum realization problem is

not discussed in this paper.
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(Continued from page 444)
Table 4 Average computational time of algorithms with

different sizes of machines

Number of
. MGA GA Rajendran Ho & Chang
machines
5 97.6200 114.6200 1.2200 0.3200
10 155.9800 147.6600  2.1400 0.5800
15 212.9800 179.5800 3.0800 0.8000
20 266.9600 209.3000 4.0000 1.0200

4 Conclusions

From the figures in the Table 1 to Table 4, we can see
that:

1) The MGA show consistent improvement over the
general GA . The average improvement of MGA is signif-
icant of 2. 878% better than that of the Rajendran’s
heuristic.

2) The computational time of all these algorithms in-
creases with increasing problem size. The running time of
the MGA and GA is directly proportional to the number
of jobs.The computational effort of the MGA is less af-
fected by the number of machines. MGA takes similar

amount of computational time with GA, while both of
them take much longer time than the heuristic algo-
rithms.
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