HlekE 3w
19946 7

i e 5 R A
CONTROL THEORY AND APPLICATIONS

Vol.16,No.3
Jun. , 1999
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Abstract; This paper is concered with the problem of quadratic stabilization based on observer for uncertain systems with
time-varying state delay. Two classes of uncertainties are treated. By applying the Lyapunov stability theorem and norm inequal-
ities, we prove several theorems about quadratic stabilization. The proposed state feedback quadratic stabilizer can be obtained
by solving a Riccati equations. Finally, illustrative example is given to demonstrate the application of these criteria.

Key words; uncertain system; time-varying delay; quadratical stability; observer

A E R ISR i RGIASE MY Riccati 2%
R FHEE
(TE B RAR B - P, 710049)
- T T R O R 50 5 38 0 VR S . P2 E M B 36 Lyapunov
RSE M R ORI T JLAS6 T YR M S T 3R A Riccati 7 T 648 78 457 — R

ERPRAS SR 885U, AL R HRIE T IRGR.

KER: AHERG; AR, ZRiEEE; Wl

1 Introduction

Many techniques have been proposed to stabilize un-
certain systems with state delay via state feedback in [ 1]
~[3]. Most of the research on designing controllers to
stabilize dynamic systems with state delay has been fo-
cused on the use of state feedback for the constant delay
factor 4!, Variable delay was treated but some sort of
decomposition ( dynamic or quadatic) was employed in
dealing with the uncertainies. In this paper, the prob-
lems of quadratic stabilization based on observer for con-
tinuous-time uncertain systems with time-varying state
delay are discussed. Two classes of uncertainties are
treated: 1) general normed bounded uncertainites and 2)
satisfying matching condition uncertainities. By applying
the Lyapunov stability theorem and norm inequalities,
we obtain several theorems about quadratically stabiliz-
able based on observer. Finally, typical pollution dy-
namic model in [1] is given to demonstrate the merit of
the present schemes.

In the sequel, let W’ be the matrix transpose of W and
I'be identity matrix. we denote V > 0 positive difinite
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square matrix of V, and B the Banach space of continu-
ous functions ¢: [ - d,0] — R* with lell.: =
sup || ¢(a) ||, where || - || is Buclidean norm. If x:
[~ d,r]—R"is continuous and = > 0, then we intro-
duce x, € B and x,(a) = 2(t + ), ~d < a < 0.
2 System description
Let us consider the uncertain system
(1) =[A + A4(0(2)) ]x(2) +
(4 + 84,(0(e)) ] - x(2 - d(2)) +
[B + AB(6(t))]u(t), (1a)
y(1) = Cx(t), (1b)
%, (1) =#(2), 1 € [~ a",0]

where x € R", v € R",
control vector, measure vector respectively. 6(t) € R?
is the uncertain element. d(¢) is any bounded function
satisfying 0 < d(t) < d* < o, d(t) s 9 <1, A
€ We, Ay € B, B € B™™, € € B are
known constant metrices. AA(-),AA;(+), AB(-) are
uncertain real function matrices, $(¢) is a continuous
vector-valued initial function defined on [ - 4* ,0].

y € RP, are state vector,
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We now make the following assumptions.
Al The uncertain vector §(¢) ;I — (2 is continuous,
where {2 € R? is a prescribed compact subset of [37.
A2 The pair (A, B) is controlable.
Let a: = max || AA(O) |l ,
0€Q
b: = max | AB(O) |l ,
e n
a;:; = max ” A:‘11((9) ” .
[dS3Y]

3 Main results
Suppose the observer of system (1) is the following
equation ;
2(t) = Az(t) = Bu(t) + rPyC' (y - C2(1)),
(2)
and the controller
u(t) = - aB'Pz(1), (3)
where z(t) is the estimate of the actural state x (). Al-
gebraic manipulation of Eqgs. (1),(2),(3) together with
the fact that e(¢) = x(t) - z(¢) creates the closed-loop
system
% = (A - aBB'P)x + a[B + AB(8)]B'Pe + H(t),
(4a)
¢ = (A - yPyC'C)e + aAB(O)B'Pe + H(t), (4b)
where H(t) = [AA - aAB(8)B'Plx + [A; +
AA(0)1x(s - d(2)).
We introduce the following Lyapunov function candi-
date .

V(z,e) = e'Pye + x'Px + J[ N )x(s)'Rx(s)ds,
t— 2
(5)

where P, Py and R are positive definite matrics.
Definition 3.1 System (1) is said to be quadrati-
cally stabilizable based on observer if there exists a feed-
back control u(t) = — aB'Pz(t), where a > 0,P =
P' > 0, and observer (2) such that the following condi-
tion is satisfied: given any admissible uncertainties
AA(-),AA(+), AB(-), the Lyapunov derivation of
V(x,e) along the equations (4) satisfies the inequality
V(x,e) =%'Px + x'P% + é'Pe + ¢'Pyé + x'Rx —
(1= d(e))x'(t - d(0))Re(s - d(1)) <
e lxll®-eollell?,
where e, > 0, gg > 0, for all non-zero x € IR" and all
t € [0,0). '
AP+ PA-PHP + T, +¢l =0, (6)
A'Py + PyA — PoHoPy + Ty + eI = 0,  (7)

where

H: = (2a - 2% - %)BB’ - %(3 + a4 ad),
Ty: = «*B(2b* + 1) PBB'P,

Hy: = 2/C'C - %(3 v ),

T,: = 2P +3(1 - 9)7' (1 + A{Ay),
e. > 0,60 > 0.

Lemma 3.15!
Y with appropriate dimensions, we have X'Y + Y'X <

For any matrices (or vector) X and

BX'X + %Y’Y, where any 8 > 0.

Theorem 3.2 Suppose system (1) satisfies as-
sumption Al and furthermore, there exist positive definite
matrices P and P, which satisfy (6),(7) respectively.
Then system (1) is quadratically stabilizable based on
observer.

Proof To examine the stability of Eqs. (4), we in-
troduce the following Lyapunov function candidate:
V(ix,e) = e'Pe + x'Px + J'

t-d(e
where R = 38(1 - 9)~' (I + A{A;),B > 0. The deriva-
tion of V(x, e) along the trajectories of Eqgs.(4) is giv-
en by:
V(ix,e) =
é'Pye + e'Pyé + 2’'Px + x'Pi + x'Rx -
(1-d)x(t - d(2))Re(z - d(2)) <
e'Pye + e'Pye + 'Px + 'Px + »'Rx -
(1= p)x(e - d(2))Re(s - d(1)).
By lemma 3.1, we have
V(x,e) <« (AP + PA- PHP + T,)x +
e' (A’Py + PyA — PyHyPy + Ty)e,

)x(s)'Rx(s)ds,

where
H: = (2a - 2% - %)BB’ -
%(3 +a®+ ad)l,
T,. =281 +3(1 - )7 '8(I + AjA)),
To: =a?B(2b% + 1) PBB'P,
Hy: =2rC'C - %(3 +a?)l.

If P and Py are the positive definite solution of the e-
quations (6) and (7) respectively, then V(x,e) <
—e lxll —eollell < 0. The proof is completed.

Remark Parameters o, (3,7 €, and &g can be ad-
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justed independently. In practical use, parameters a,f3
are adjusted to guarantee H, > 0 and 7 is adjusted to
guarantee Hy > 0.

If system (1) satisfies the following matching codi-
tions, we will give a sufficient condition about positive
difinite solution existence of Egs. (6) and (7) respec-
tively. We make the following assumption:

A3 Matching conditions;: AA(8) = BD(6),A4(8)
= BE(8),AB(8) = BF(8),A; = BG.

A4 rank (C) = p, where C € RP*", then for any

positive definite metrix Py, there exists a matrix ¥, such

that FC = B'P,.
Let d: =max || D(8) ||,
fen
e: = max || E(O) Il ,
e n

fi = max || F(8) I .
fen
We consider the observer
z2(t) =Az + Bu + YBF(y - Cz) =
Az + Bu + YBB'Pe, (8)
where e = x — z. Algebraic manipulation of Egs. (1),
(4) together with A4 yields the following closed-loop

system:
% =(A - aBB'P)x + aBB'Pe +
aBF(0)B'Pe + H(t), (9a)
¢ =(A - YBB'Py)e + aBF(8)B'Pe + H(t),

(9b)
where H(t) = B[D(9) - «aF(0)B'Plx + BLG +
E(0)]x(t - d(2)).
Lemma 3.3 when A2 and inequality
e+ d+ ) <1 (10)
holds, then for some @ > 0,8 > 0 and ¥ > 0, the fol-
lowing equations
A'P + PA- PBHB'P + T, + ¢ = 0, (11)
A'Py + PyA — PyBHyB'Py + Ty + eol = 0, (12)

where
H: = [2a - 2 - %(4 +d+ )],

1
B
T.. =281+ (1-9)"'(I+66)],
Ty: = Ra*(3f* + 1) PBB'P,

ande, > 0,¢y > 0, have positive definite solutions P

Hy: = [27 - 5B + d* + 2)]I,

and Py respectively.
Proof When inequality (10) holds, the equation 2«

Vol. 16

_‘sz 2_%(4_}_ d2+e2) =0,hastw0rootsa1,2 =

12v/1-f2(44+d+ &)
Bf?

satisfies ¢; < @ < a3, then

> 0. For any a« > 0 which

H: = [2a —,szaz—%(4+ &+ el > 0.

Tn addition, when ¥ > 1/28(3 + d* + €*), Hy: = [2¥
- %(3 +d%+ e*)]I > 0. By assumption A2, T, + &,/

> 0, Ty + eol > Oand theorem!
tions (11) and (12) have positive definite solution P

6:2071] | then the equa-

and Py respectively.

Theorem 3.4 Suppose system (1) satisfies as-
sumptions Al ~ A4 and inequality (10), then Eqgs.(11)
and (12) have positive definite solutions P and Py re-
spectively. So system (1) is quadratically stabilizable
based on observer.

Proof To examine the stability of system (9), we
consider the following Lyapunov function candidate;

¢
V(x,e) = e'Pye + «'Px +J

.
where R = 2(1 - »)~'8(I + G'G). The derivative of
V(x,e) along the trajectories of Eqs.(9) is given by:
V(x,e) =é'Pye + e'Pyé + 2Px + %'Px + x'Rx -
(1-d)a' (¢ - d(2))Re(t - d(2)),

%' (s)Rx(s)ds,
(1)

where

é'Pge + e¢'Pgé =

e' (A'Py + PyA)e — 27e' PyBB'Pye +

2ae'PBF(0)'B'Pye + 2H(t) Pye,

%' Px + x'Pi =

%' (A'P + PA)x — 2ax' PBB'Px +

2ae'PBB'Px + 2a¢' PBF(0)'B'Px + 2H(t)' Px.
By Lemma 3.1, we have

V(x,e) <x' {AP+PA—P[2a—Bf2a2—%(4+d2+
e?) 1BBP +2B[ (I1+(1-9) " (1+6GG) ]} x +
e'{A'Py + PoA — Po27y - %(3 +d? 4+

e?)1BB'Py + f2*(3f* + 1) PBB'P}e.
Let

H.. = [20(—‘3f2 2—%(4+d2+€2)]1,

T,. =2B8[1+(1- 77)'1(1 + GG)],

1

H0=|:27—‘8

3+ d?+ eI,
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To: = f*(3f%+ 1) PBB'P.
By Lemma 3.3 and A2, the equations (11) and (12)
have the positive definite solutions P and P, respective-
ly, then V(x,e) <—e, | x |2=¢oll e ]l 2 < 0. Proof
is completed.
4 Examples
We consider the following river pollution model in [1];

-2 0 1 0
N e[,
-1 -2 0 1
0.6 0 1.2 0
S A ,
0 1 0 1.5
0.08cos3t 0
] I
- 0.08sin3¢t 0.05sin5¢
- 0.01sin5¢ 0
VIR ot ool
0.02sin2¢ — 0.01sint
AR = [0.01sin5t 0 ]'
0 0.01sin5¢

fOI‘Ec = €g = 1, a = 2.4, ﬁ =2.8, v = 1.5, the so-
lutions of Eqgs. (11) and (12) are

3.91 —0. 16] 4.69 -0.33
“looe 21T o033 3m
respectively. The gains are K, = 2% 03 23 ’

~0.39  5.06
8.44 _0.74 _
°“ 1l 0.5 7.2 J respectively.

5 Conclusion
Design of linear high-gain controllers to stabilize un-

certain time-varying delay system based on observer has
been developed in this paper. The uncertainties and de-
lay factors are considered unknown but bounded, the de-
sign approach is essentially based on the construtive use
of Lyapunov functionals. The example on typical pollu-
tion model has been performed.
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