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Abstract: For single input nonlinear systerns, this paper pives a staged transformation pseudolinearization method and its
algorithon. Firstly the criginal system is transfonmed into mommal form. Then making use of the algorithm in [1], the transfor-
mation 7 that changes notmal form into psendo-normal form is obtained. Under the first transformation, parts of the states of the
ariginal systemn have been exact linearization and the staged transformation algorithm is easier than transforming original system
into pseudolinearization directly. The compuier simulation results of single inverted pendulum verify the validity of the proposed

approach
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1 Introduction

Over the last decade, researchers have been investi-
gating varions procedures in linearizing nonlinear systems
- including local linearization, operating set lineariza-
tion and exact lineatization. The effective region of local
linearization is very limited. The exact input-state lin-
earization'?) tansformation is difficult to acquire and
sometimes does not exist. Furthermore when zero-dy-
namics are unstable, the method of exact input-output
linearization is difficult to use, though the transforma-
tions is casier to obtain.

Extended-linearization introduced by Rugh and Bau-
mann'>*! is a design method based on the family of lin-
earization of the system, parameterized by the family of
operating point set. Teboulet and (}mmpeﬁeln'sl con-
sidered another operating point set linearization method -

pseudolinearization, i.¢. via state feedback and state
coordinate change such that, in the new coordinatc the
linearization model is independent of the operating point
set. Lawrence and Rugh'®”) had developed the method
into an input-output version.

This paper proposes a staged transformation pseudolin-
earization method for general single input nonlinear sys-
tems. Firstly, we get the normal form, which is partly
exact linearization. Then, we obtain a specific algo-
rithm, which transforms nomal form into pseudo-normal
form. Finally, we give the asymptotic stable control law
and the computer simulaton results of single inverted
pendulum.

2 Staged transformation algorithm

Consider a single input-ocutput nonlinear system
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{:t fx,u), (1)
y = k(z),
where x € R®,» € R, is an input, (-, -):R" x &
— [R™ with (0,0) = 0 and y € R!, is an output.
2.1 Normal form

Resembling the algorithm of [ 8], differentiate the
output y(¢) in series mmtil

3y (x,u)/3u £ 0,

Set = i and ' (x,u) = ». The oumber r is

named relative order of Eq. (1) and we can obtain the

first staged state feedback

u = y iz, v). (23
We can find!!!

7= [p pecsl, (3)

such thatd[y,y' -+ ¥ ™!, 91 .., 1/2x is nonsingu-
lar in some neighborhood of equilibriurn point.

Setting
i= 1,2, 0,

{i+1}
L=y »
{ @

Zy=1n.7j=0L2,yn-r
By state feedback (2) and state coordinate change (4),
we have the new state equations in z-space

{2; = .t = L2, ,r -1,

i = v, (5)
i = glz,v).

Write Eq. (5) as
2 = glz,v) = gla, z7,v), (6)

where z; = [z, =23 z,|. In this paper we call
Eq. (5) or Eg. (6) nomnal form.
Resembling the definition in [ 1], define operating
point set of Bg. (6) as follows
Aco & 1(z,0),5. 1. g(z,0) =0}, (N
Because of the special form of Bq. (5), A,,, can be
written as
Ao & 1(z,0) 1 55 =
glz,v) = 0l. (8)
Whenr = norr < nand 2y = g(z,v) is stable
n some neighborhood of the operating point set, we can
synthesize system (6) making use of linear system
theory, When 7 < r,z; = g(z,v) is unsuble in some
neighborhood of the operating point set, this case is
the emphasis of this paper and we will descuss it in
Section 2.2.

=z o= v =0,

2.2 7Pseudo-normal form
At first, we introduce hypotheses as follows
Hil; g(+, «):R* x R*—R" is analytic in a neighbor-
hood of the operating point set and g(0,0) = 0.
H2:[2g/3z 2g/3»]14,.,is controllable and none
of the cigenvalues of g /9z; | i,_, is zero.
Otherwise, due to
[agraz agrav)ia,,
is controllable, we can apply state feedback such that
none of the eigenvalues of [93./@z;] 1 &, , is zero. Now
linsarization of the system (6) in the neighborhood of
the operating point set yields the linear state equation
8% = Bzu1et = 1,2,,r - 1,
[a,, Y
8i; = 8g(z,v).
For convenience we simply write the above equations
as

3 = F3, + G3,, (9)

where F = 281 %,,.6 = &1 1,.,.

F4 v
Our aim is to find mappings
{El Ti(z)ii = -I'I.“!n'l
w= T, (z,2).
(Ty,*,T, being functionally independent and
3Th.1/2v 52 0) such that Eg, (9}in the neighbothood of
A,., has the form as follows

n

(10)

[6&“.‘ = SE.'.‘_];!: = 11“‘1"’ - lI

3¢, = dw.
Write the above equation as
88 = AgdE + bodw. (11)
It is obvious that the linearization model (11) is inde-
pendent of the operating points.

We call Eg. (11) pseudo-normal form, And using
the algoritm of [1] we can acquire transformation
(10).

2.3 Pseudo-normal form transformation

Because of the particularity of Eq. (6), the algorithm
of transformation (10) is simple. In the case of HI and
H2, A, , can be written as
Ly =z0) 1= =2 =9 =0z =plz),
where z; = p(z;) is decided by

Elzzpv) 14, =0
and

P(?-r) = p(zl) = [pl(zl) Pz(zl) T Pn-r(xl)]-
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So the 1-form of transformation T7,i = 1,-**,n + 1l can
be chosen as

dT, | &, = a;(z),
{dTn+l i jz.ﬂ = 0‘n+1(5-’|)1 (12)
where
a(z) = [a:,l(zl) a;2lz) ﬂ’i.n(zl)]s

i =1,2,,n,

Gnyl = [an+1.1(21) @ai1.2{21) an+1.u+l(zl)]!
a;{i = 1,2,",n + 1) can be calculated by the formu-
las in [1].

2.4 Transformation algorithm
The transformation {10) can be written as

T; = f’i(h) + gﬂgz;s

LY
Tn+| = n+1(zl) + Ean+l,jzj + nil,n+l?-
i=2

meEq (12) ¢,—(21)(I‘ = 1,2,
pressed by

55:‘(31) = j(am(zl) - ZH:PJ-.—(ZI) d%la;.;)dzln

«-,n + 1) can be ex-

Jj=rel

L= 1,2,"',"-,
and

() = [(Gunaa) = 2 (30) g M

j=ril

Because of 2, = 0,**,2, = v = O in A,_,, compared
with the algoritm in [1] the T;,i = 1,--,n + 1 are
easier to be obtained. And the larger the number r is,
the easier the transformations are to be acquired uvntil r
= n the transformation T = T{z) is equal to Z,,,,.
2.5 The special case

Now we consider a special case i.e. when Eq. (6)
satisfies condition C1, how to cbtain transformations T,
E=1,-,n+1.

Cl: Ag/3z, = 0.

Then we have a theorem as follows:

Theorem 1 If Eq. (6) satisfies condition C1, T;, i
= 1, n are linear transformations and state feedback
v=w-gr,whereqg =[q, g g, ] is constant
oW vector.

Proof Under condition C1 and hypotheses Hl and
H2, A, , can be written as
Avo = i(z,0) b2 =0,i =23, ,n,v =0},
thus Eq. (9) can be expressed as

8 = Adz + 6w, (13)

where A, b are constant matrix. Assume 56 = 78z and
v = Sw - gfz are the required change such that Eq.
(11) is satisfied, where g is the last line of TAT™'.
From Section 2.4, we know that v = w - ¢z is a solu-
tion of §v = dw - gdz. Under the transformation § =
Tz, Eq. (6) can be written as
T'E= g(T7'¢,0). (14)
Linearizing Eq. (14) in the neighborhood of A ,, yields
T-188 = AT '8¢ + bdv,
substitute v with Sw — bz, then we can obtain the form
of Eq.(11). Q.E.D.
2.6 Asymptotic stable control law
In order to obtain closed asymptotic stable system in
the neighborhood of the operating point set, we consider
the state feedback control laws of Eq. (11) has the form

w=-k(&-£&"), (15)
where £ is the equilibrium point and & may be decided
by LQR optimal control.

Theorem 2 Suppose that system {6) can be trans-
formed mto Eq. (11), then the control law

u = bz, Thle(x), - k(8(2(x)) - 67)])

(16)
can stabilize original system (1) in the neighborhood of
the operating peint set.

Proof The control law can be easily obtained from
state coordinate change (4),(10) and state feedback
(2),(15). Q.E.D.

3 Some analyses
3.1 System differentiability

We do not suppose that the right hand of the state e-
quation (1) is sufficiently differentiable, i.e. f(x,u)is
sufficiently differentiable m the neighborhood of the op-
erating point set. The property makes the algorithm even
be able to deal with some system with nondifferentiable
parts. The state equations of inverted pendulum in Sec-
tion 4 are an example. Malking use of the property, we
can deal with some more general nonlinear system.
3.2 Part exact linearization

The difference between transforming Eq. (1) to Eq.
(11) and transforming Eq. (6) to Eq. (11) is that Eq.
(6) is partly exact linearization which weakens the non-
linearity of original system.
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3.3 Approximate optimization

For single input affine nonlinear system, Tan'®! has
proved that optimal control law of psendolinearization
system is the approximate optimal control law of the o-
riginal nonlinear system.

Suppose Eq. (1) is an affine nonlinear system. In
Egq. (15), let k = bP, where P is the unique positive-
definite solution of the algebraic Riccati equation

PAg + ATP — PbotdP + Q = 0,
and () is a symmetric, positive-definite matrix.

From [8], we know that feedback (15) is the ap-
proximate optimal control of Eq. (6) with performance
index

7= 2T er() + Bl
D

From Eq. (2) and Eq. (4), we can write perfor-
mance ndex as

J= %J:lTT(z(x))QT(z(x)) +

Trar(z(x),v(x,u))}d:.

So control law (15) is an approximate nonlinear opti-
mal law of original system (1), too.
4 Single inverted pendulum control

To illustrate the design method, consider the problem
of balancing an inverted pendulum on a cart'®].

Friction considered, the inverted pendulum is de-
scribed by the following differential equations:

5\31 = X3,

- l( - 08 _ .L )
2 = a1 £8Inx) — acosx) mplF’ X321y
ﬁ (17)

.‘]‘73 = X,

1
|44 = aF + a1 — a3 ~ ;,u,_.sgn(x.,),

where x, is the angle (in radians) of the pendulum from
vertical, and x; is the displacement of the cart from the
origin, and F is the force as control applied to the cart
(in Newtors). a = 24,0 = (m/m)lalsinx,,a; =
(m,/m)lscosxy,ap = (I/m}F and m = m, + m,.
The various parameters and the values used in the simu-
lation see [8].

In order to obtain normal form, we choose y = x3. It
is straightforward to write the state coordinate change as

T3 | K3y I3 = K4, I3 = Xy, 3y = X3,

and state feedback

F=vx (m—%mﬁ(z})) +

3 . 1
—%(g sinzy — —ﬂ;!ppzﬂ + posgn(z).
In z -space, the state equations have the form

Z'l = 2,
52 = v,
2y = Z4, (13)

3, . 1
2y = 4l(g sinz; — ¢ coszy — m-,l,upz.;)'

It is easy to verify that Eq. (18) has an unstable zero
dynamics, i.e. it is nonminimum phase system, so we
can not synthesize it by exact feedback linearization!!! .

It is obvious that Eq. (18) satisfies condition C1,so0
the transformation T is a constant matrix.

Linerizing Eg. (18) in the neighborhood of A, .,
yields

8z = Adz + bAV. (19)
From Theorem 1, we can obtain £ = Tz and in the end
we can obtain the form of Egq. (11).
Choose Q = [1 0 1 O0],R = 1 and solve the
PA+A"P-Pob"P + Q = 0.
We can obtain LQR. optimal control law
Oy = v - 9" =- kde,
where - & =- (Pb) =[1 1.9 2.8 7.4).

Based on Thecrem 2, we can obtain the final control

law as follows
F=(xy3+7 4x4 +282; + 1.92,) x
(1.1- %Dcosixl} +

f‘D(Q. 8sinx, — 0.00004x,) % cosx; +

0.0005sign(x,) — 0.05x2sinx,. {(20)
The responses of the system with control law (20) are
shown for four values of x, (0) with x,(0) = x3(0) =
x4(0) = Oin a,b of Fig.1 as curves 1,2,3,4 respec-
tively.

The responses of the system with control law (20) are
shown for four values of x3(0) with x,(0) = x4(0) =
0, xy =0.5236 = 3P inc, d of Fig.1 as curves 1,2,
3,4 respectively.
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5§ Conclusion

This paper gives a staged transformation pseudolin-
earization method. Firstly the original system is trams-
formed into normal form, then the nomal form is trans-
formed into pseudo-nommal. In this paper, we give the
staged transformation algorithm. By staged transforma-
tion, exact linearization of part states is obtained and the
staged transformation algorithm is an easier algorithm
than transforming original system into pseundo-lineariza-
tion directly. In Section 4, the results of computer simu-
lation of single inverted pendulum verify the validity of
the proposed approach .
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