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Abstract: The stabilization problem of a Timoshenko beam with some lincar boundary feedback controls is studied. First,
under the condition that the feedback coefficient matrix B is positive, the epergy of the corresponding closed loop system is
proven to be exponentially convergent to zero as time ¢ — c . Then, under the condition that rank ( B) = 1, some pecessary
and sufficient conditions for the coresponding closed loop system to be asymptotically stable are derived.
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1 Introduction

‘The purpose of this paper is to study the boundary sta-
bilization problem of Timoshenko beam. The system to
be investigated is described as follows (see [1]):
(o + K(¢' ~ ') 20,0 < x < 8,250,
IPQE—EI¢+K(¢—w’)=D,O<x< l.t >0,
1w(0,t) = @(0,t) = 0,
K(p(l,2) - w' (1,2)) = u(2),
\~ Efg’(1,t) = us(s).

(1.1
We apply the following linear boundary feedbacks
{ul(:) = aw(l,t) + Bp (1,1,
ug(e) = rw(d,e) + ¥o (1,1)
as the controls to the end of the beam. Here and hence-
forth, the prime and the dot always denote derivatives
with respect 1o space and time variables, respectively.
The meanings of all the other varables, functions and
coefficients involved in the above system are the same as
those appeared in paper [1]. Set

(1.2)
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Up to now, a lot of interesting results on the bound-
ary feedback stabilization of Timoshenko model have
been obtained by many investigators (e.g., see [1 ~
3]) .In this paper, we study on the asymptotic behavior
of a Timoshenko beam with linear boundary controls. It
is well known that this type of controls, vnder the con-
dition of rank ( B) = 2, can stabilize the Timoshenko
beam exponentially. In the case of rank (B) < 2, as
will be seen below, the closed loop system may no
longer be asymptotically stable.

In [1], the authors proved that under the condition of
a,¥ > 0and 8 = = = 0, the energy cormesponding to
the related closed loop system of (1.1) ~ (1.2) decays
uniformly to zero as time ¢ — <« . Recently, under the
condition of rank (B} = 2 and 8 = 7, the energy of the
closed loop systern (1.1) ~ (1.2) with variable coeffi-
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cients is proven to be exponentially stable in [4].
Hence, it is natural to ask, in the condition of rank ( B)
« 2and f % T, whether the closed loop system (1.1)
~(1.2) is still asymptotically stable or not. In the fol-
lowing sections, we will investigate this question.
2 Wellposedness of closed loop system

To begin with, we incorporate the closed loop system
(1.1) ~ (1.2) into a certain function space. To this
end, we define a product Hilbert space # as

= Vg x L5(0,1) x V3 x L7 (0,1),

where

Vi = to € B*0,1)| @(0) = Of, & = 1,2.
and H*(0, 1) is the usual Sobolev space of order k. The
inner product in #'is defined as follows:

(Y1, V) =I;K(<P[ - w} )@y ~ wi)dx +

! ! ¢
J-DEIQDiqu dx + J-npzlzgdx + prﬂblsbzdx

fol' Yb = [wktzkl?Et?k]Teﬂg k= 1,2.
We then define a linear operator A in &

z

w w
K, , i
A ; | Rl | o |€ DA,
El, K .
¢ 3@'—3(?—10) $

D(A) ={lw,z,0,9T € Flw,p € B,2,¢ € Vi,
K(p(1) - w' (1)) = az(8) + Bp(i),
- Elp' (1) = we(1) + vp(D)}.
Then the closed loop system (1.1) ~ (1.2) can be writ-
ten as the following linear evolution equation in #:

%tﬁ = A¥(s), (2.1)

where

¥Y(t) = [wi(z,e),w(x,t),0(x,8),@(x,8)]".

Lemma 2.1 Assume B 3 0, then A generates a Cp
contraction semigroup 7(¢) in F#

For the proof of the case of # = 7, see [4], and in
the case of # 2« 7, the proof is similar and hence it is
omitted here.

Acconding to the linear semigroup theory, we get

Theorem 2.2 For any ¥, € .#, (2.1) has a unique
weak solution Y(1) = T(t) Yy, where T(:) is the linear
semigroup generated by A. Moreover, if ¥, € D(4),
Y(t) = T(t)Y, becomes the strong solution tw (2.1).

3 Asymptotic behavior of the closed loop

system {I)

In this section, we discuss the asymptotic behavior of
the closed loop system (2.1) under the condition of B
z0and f = r.

The energy comesponding to the sohtion of the closed
loop system (2.1) is defined as
E(t) =

{
%L(EI | @ P+K | o-w' Pep Ll P+L | ¢ P)ds,

where ¥(¢) = [w(+,0),w(+,8),0(-,1),0(,0)]"is
the solution to (2.1). Let Yo € D(A) then

E(e) =-[208,0), (L, 0)]1BL2(2,8), (1,0 ]".

(3.1)

The following proposition can be found in [4].

Proposition 3.1 Assume that B > 0. Then there
exist positive constants M, o such that

E) s M| Yolle™, VY, € #
Let oy = +/ p/K.py = +/ I,/EI. The following is the
main result of this section.

Theorem 3.2 Asamme that § = r. Then the energy
of the closed loop system (2.1) decays asymptotically to
zero for all (p, I, K, E) > 0if and onty if rank (B) = 2.

Proof The sufficiency of the theorem is cbvious.
Now we prove the pecessity. In the case of rank (B) =
0, the closed loop system (2.1) is conservative, and
hence the assertion is trivial. Thus it remains to prove
that the closed loop system (2. 1)is not asymptotically
stable in the case of rank ( B) = | for some parameters
(e,1,,K,EI) > 0. We koow that0 € p(A) and that
the resolvent of A is compact. Hence for the given pa-
rametersp,IP,KandEI,meclosodloopsystan(z.l)
does not decay asymptotically if and only if there exists
w € B such that iv € g,{A) (see [5]). Assume that
AV = ¥ with ¥ 2 0and ¥ = [w,z,0,¢]T €
D(A). L is obvious that w s 0. Fom
E) lyn-rne = 0, we get [ (1), ¢(8)]1B[2(1),
(D17 = (2(2) + ¢(1))* = 0, where B = [ 11,
t217[ £1, ¢, ] with two real constants ¢; and ¢, not equal
to zero simultanecusly. Moreover, since B is symmetric
and nonnegative, we have B(z({),¢(£)]" = 0. Hence
p(1) - w (1) = ¢'({) = 0. Thus w and p satisfy
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'f(wﬂ- o) +al =0,
By K- w)datp =0,
P P

w(D) = g(0) = ,w(l) + (i) =0,
g/ (1) = g(1) - w'(1) = O.

(3.2)
Set
Z(z) = [w(z),w' (z),p(x), ¢ (2)]".
Then (3.2} can be written as

Z = AZ,
B1Z(0) = D, (3.3)
B, Z(1) = D,
where
0 1 0 O
i a D 0 1
0 0 o 1f
0 -c¢c -5
i a, a
af; - apy
O = (a1t + ﬂﬁltz)e"ll (a;ty - ﬂﬁltz)e""
az Bre! oa B!
L (af; - al)en! {af - B )e ™
‘We have
aptz

rank( Q;} = 2 + rank| Bi(a;sinhia; — ajsinhia,

tiy D 1 O

B1=[IDDD].32=[D 0 D:Js
0010

0 -11
K
EI
Tn the condition of b = ¢, let Z = PZ,, where P,q,
az, B; and B, are the same as those defined in [7]. Then
the first equation of {3.3) becomes Z{ = AZ,, where

A A PYAP = d.iag{al, - @y, - azl.

The general solution to Z{ = AZ, can be written as
Z,(x) = diagle™®, e %%, e%% ,e"2%| 8,
where & is a 4 x 1 constant vector. Therefore, for
(3.3) to have a nontrivial solution, it is necessary and

sufficient that

2 2
a = ple’, b = plet?, ¢

det(Q;) = 0, (3.4)
where
as az )
a3 - af;
(azty + afatz) e (agty — affptz)e 2! |.
aayfre™ sazfhe '

(afy - afde' (o} - afy)e=!

a2l

az(ﬁzcoshall - ﬁlcoshazl) .

a { Brcoshazl — Bycosha;! By a;sinhazl - azsinhia,l)

Therefore rank { ;) < 4 if and only if the following
transcendental equations on a, b and ¢ has solution ( ag,
bo co) such that ag, bg,co > 0:
aty( Bcoshayl - Bheoshe i) =
t1{ azsinha,! - ajsinha; i),
af1Bzt2{ @ sinhayl - agsinhe, i) =
aiaqt { Preoshay] - Bicosha;l).
Now we prove that, under the condition of rank ( B) =
1, (3.5) has a positive solution { ag, bo» co) With &g 5
cg. Without loss of generality, we may suppose that
i =1
In fact, in the case of # + r # 0 and p; # p;, denote
£ A t/t1,0 A ayaztyafifaty) . For & > 0, from
the definitions of £ and ¢, it follows that (3.5) is equiv-

(3.5)

alent to
apsinhe; — affjcosha; = aqsinha; - afB;coshe,
{alsin.haz - focoshay = asinhe; — B dcosha,
(3.6)
or equivalently, for b > ¢ (to be precise},
{vsinu + aff Scosy = usinu + af;Ecosu,

usiny + fhocosy = vsink + Piocosu,

(3.7)

with ¢y = Llu,a1 = iv. Set

8, A arceos ————=——— = arccos
T i (apB)
H:ém‘ccuﬁ—"u— = arc
+/ ut+ (af,8)?

Then (3.7} can be rewritten as

i
!uz_‘_(u:_b)zez’
W

CcO8 .
f‘u2+(u2_b)262
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(% 4 (9% - 5)e%in(v - 4,) =
vou? s (u? - 6)28%in{u + 8,),
\ ‘BL-\/HE + (o - p)*¢?

(3.8)

cos(p - 8,) =

BV u? ¢ (W - b2
- M

cos(u + 65).
It is not difficult to prove that there exist two positive
numbers ug, vy satisfying
v v+ (9} - 5)%&%in(vg - 6;) =
Voud + (ud - 5)28%in(up + 0;)
and 0 < vy -, < 2,572 < ug+ 0 < Inm. Let ag,
bg s o be defined as above, and set

(93 - ug)pcos{vy — 6;)

b = vévgeos{wy — &) — udiigeos{ug + 83)°
g - (9§ — ud)@ocos(up + 6,)
= véipcos{wy — &1) — udiocos(uo + £2)°
where

ug + (ud - 528 o+ (v - 8)°€°
» ¥ A .
Uy Yp
Thus it follows that (3.8) has a positive solution { ag,
60,80) with bo 7 £g.

g A

As for £ < 0, by the same argument as above, we
can prove the same assertion as that of the case of £ >
0. Inthe case of p; ¢ 2,8+ 7 = Qor oy = pq, the
proof for that (3.5) has positive solution is trivial.

By the definition of ¢, 4 and ¢ and from the (ag, by,
co) chosen above, it is easy to find parameters oy, Ky,
150+ Elp and wp such that the comresponding closed loop
system (2.1) has the eigenvalue iwp € 0,(A4). The
proof is then complete .

4 Asymptotic behavior of the closed loop
system (II)

In this section, we discuss the asymptotic property of
the closed loop system (2.1) for the nonsymmetrical
feedback case (8 « t). Denote s & (8 - r)wis2.

In the case of B > 0, we have known that the related
closed loop system (2. 1) is exponentially stable. We
now discuss the case of rank (B) = I.

Lernma 4.1 Let £, be defined as above. Assume

that rank (B) = 1. Then for w »+ +/ K/, iw €
6,{4) if and only if (a, b, ¢) is a positive sohution to

Kt;((o- af} El)coshayl - (o - afy El)coshayl)) =

Elt; (a1 (K~ B0 )sinha;l- a;{ K- 85 )sinha;l,

aya, B\ (Bo( K - 816 Jooshas ! - 1 { K - o dooshay 1) =

Kt(pray(o - af, B Jsinhay L - Bya, (o — af B Jsivha,t),

(4.1)
with b 3¢ ¢, where
g = plw?, b = o3u?, ¢ = K/EIL

The proof of this lemma is similar to that of Theorem
3.2, hence it is omitted here.

By the elementary skills of analysis, we can prove the
next two lemmas,

Lemma 4.2  Assume that ¢, = 0,¢; % 0 (i.e., @
= 0,7 =- fand ¥ % 0) and £ i /K/I, are not spec-
tral points of 4. Then the energy of the closed loop sys-
tem (2.1) decays asymptotically to zero as ¢ —=+ ®.

Lemma 4.3 Assume that £, %« 0,4, = 0{i.e., 7
=0,7 =- fanda % 0) and + i VK/1, are not spec-
tral points of A. Then the energy of the closed loop sys-
tem (2.1) decays asymptotically to zero as ¢t —=+ .

Set p &o Kt,( Elt;)~'. The following is the main re-
sult of this section.

Theorem 4.4 Assume that rank (B) = 1,7 % §,
T+ fx0and B > 0. Then, the energy of the closed
loop system (2. 1) decays asymptotically to zero as ¢
—+ if and only if
’agﬂl(qz— a%ﬁ%)sin}mll
a18;(7* - a3pt)sinhasl,
agﬂl(qz - a%ﬁ%)coshall =
1P + (e = Baa - b + ¢))p)sinhasl,
ﬂzﬂl(‘ql - afﬁ%)coshazl =
(P +(c-fle-b+ ¢))y)sinhayl
does not have positive solution (2, 5,c) with b =« ¢.

Proof Acconding to Lemmas 4.1 ~ 4.3, it is enough
o demonstrate the following two assertions:

1) (4.1) has a positive solution (e, 5, c) with b ¢
if and only if (4.2) does so.

2) A has 1o pure imaginary spectral points + i/ X/T,.

First, we prove assertion [). We suppose that (4.1)
has some positive solution (a, b, ¢) with & % ¢. Com-
paring the real part and the imaginary one at the both

(4.2)
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stdes of (4.1) and through a demanding calculation, we  obtain
7 -5 aifa - azfh coshas!
0 GEI(B - B2) ai(K - ofiBEl) - ax(K - o ED) || coshay!
Qx4 0 0 b - s anfaladf - ) || simha? =0, (4.3)
0 0 S 5 sinha;/

with

fr=Katar(K- oo EI(8)+$2)) +azfi B2 (aEIp)?,

fo= Kayai{af  EI( 81+ 32) - K) —a 11 fa( aElp)*.

It is easy to see that 3 < rank (Q,) < 4 and that
(4.3) is not compatible if rank ((Q,) = 4. Thus we
know that (4.1) has positive solution (a,d,c) with &
» ¢ if and only if det (Q,) = Oand (4.2) holds true.

From the fact that coshk;/ — sinh’a;! = cosh®a;! -
sinh®a;! = 1, it follows that (4.2) implies det ( Q) =
0. Thus, assertion (1) follows.

The proof of assertion (2) is similar to that offered
above.
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