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Abstract: The robust stability analysis for a class of hybrid system with discrete state uncertainty disturbance are present-
ed. Aiming at the effect of discrete stale uncertainty disturbance, & switch strategy and a sub-controller design are stated to guar-
antee the robust stability of the whole system. As a result, the performance of the system is improved.
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1 Introduction

Hybrid systems mean that systems contain both con-
tinuous and discrete vartables and the two kinds of vari-
ables affect each other. It's come into being a class of
coupling nonlinear systems. The continuous variables of
the systemns correspond usually to continuous dynamic of
real systems, but the discrete variables are very mami-
fold. The discrete variable could be produced by digital
sampling from digital control systems, sample data sys-
tems or from logic switching, the change of system
structure, the shift of equilibrium and so on. On the sta-
bility analysis for hybrid systems, M. S. Branicky'")
used Multiple Lyapunovy Function to analyze the stabili-
ty. J. L. Mancilla-Aguilar et al®® discussed exponential
stability and digital feedback stabilitzation of switching
systems. The controllability, observability and stabiliza-
tion of the hybrid systems had been discussed by [3 ~
5], whose candidate systems arc lincar. On the use of
switch to improve the performance of systems, J. H.
Frommer et all®, L. Y. Wang et all”? designed switch-

ing contro! strategy and analyzed the stability of the
closed-loop systems respectively. On the robust control
for hybrid systems, L. Y. Wang et all”, J. A. Ball et
all® | M. De La Sen!®! had studied respectively. But all
those works did focus conly on the disturbance of contin-
wous part, not investigate the dismrbance of the other
important part of hybrd systems, namely the discrete
dynamic part.

In this paper we analyze the effect of discrete distur-
bance for a class of hybrid system and based on the anal-
ysis we provided a robust control strategy for a class of
hybrid system.

The paper is organized as follows: In Section 2 the
problem formulation is provided, and the effect of dis-
crete disturbance is analyzed. In Section 3 the switch
strategy and sub-controller design are given. The perfor-
mance and stability of the hybrid system are analyzed in
Section 4. A simple simulating example is presented in
Section 5 and conclusion is drawn in Section 6.

% Foundation item: supported by the Key Project of Chisa { 970211017} and the Natiogal Mahmal Science Foundation of China (63604003, 693010) ,

Received date: 2000 - 01 - 10; Revised date: 2000 - 10- 20.


http://www.cqvip.com

376 CONTROL THEORY AND APPLICATIONS

Vol.18

2 Problem formulation

Consider a class of hybrid system given in Fig. 1. It
includes two kinds of state variables namely continuous
part and discrete part. Correspondingly, its input and
output should contain the two parts too. The system can
be described as

% = A(s) + B(s)u,

{,(z) = D(s(2.),a), (1)
where x € [R" is the continuous state, s € S, S = {5,
--+, 5, | is the discrete state set, u» € R™ denotes the con-
tinnous input. @ is the swithching control.

For fixed discrete state s, the system is a continuous
linear system. It can be described in differential equation
or transfer fupction. Here we use the state differential e-
quation, A(s) € ™, B(s) € K™ are the system
matrices for each discrete state s.

L Hybrid sysiem
& —* (x.5)

Fig. 1 Hybrid system

The change of the discrete state s can be described by
DEDS, D(-}. The change of state s may result from the
switch of the system structure, or the jump of the inter-
nal states. s(¢_) denotes the discrete state before the
time ¢, s( ¢} denotes the discrete state s at the time of 7.
For the switching control variable @, the shift from the
old state s, to the new state s, is said a switching con-
trol, denote @ = (SgdsSnew). Obviously at time ¢,
s(t_) = s(t) means no switching. The set

3= {(si,5) 08005 € Seief = 1, &l
represents all the possible switching, namely switching
control set. Clearly, it is a limit set.

Under the assumption of the system continuous vari-
sble is measurable, we only consider the feedback with
continuous state in this paper.

Due to the imprecise of modeling, the aging of the e-
quipment of real system and so on, the system is usually
affected by uncertainties. With the deep study for the
uncertainty robust control and H. control have been
greatly developed and gotten many results. Main results
of them are aimed at continuous system. For hybrid sys-
tem (1) in ideal state, if switching control is @ = (s,
5;), then the comesponding continuous control is u =
k(s;}x, but the new discrete state maybe s;, not s; as

the system may be affected by disturbance and other un-
certain factors, therefore the closed loop system will be
2 = A(sj):r. + B(sj)k(si)x.

In this case the discrere state will not match continuous
control input, the primary control design can not im-
prove the performance of system, even not guarantee the
stability of subsystems.

Since there is discrete state uncertainty, we know that
the systemn can be described as

2= A(s)x + B(s)u,
{s(z) = D(s(t_),a,8),

where & is the uncertain disturbance for the switch con-
trol 7. From Fig. 2, we can see that the miss matching
of the sub-systems and sub-controllers by the distur-
bance. The state s; which is not affected by uncertain
disturbance is said to be nominal discrete state, and
name the state s; which is affected by disturbance is said
to be real discrete state. Denote

d(si,5): = [A(g) - 4(5),B(s) - B(s.)],
then with & = (s, = s;), the subsystems may be de-
scribe as follows:

i = A(s)x + B(s)k(s)x =

(2)

A% + BGOR= + a0, ]2 )

(@) {5 Ats) Bisy)
B LA 55
u=k(s, Ix

Fig. 2 Affection of discrete state disturbance

The last term of formula (3} is due to the discrete
disturbance. It’s evident that the “size” of affection is
decided by d(s;,s;). Would this affection damage the
stability of subsysterns? For discussing this affection we
give some definition as follows:

Definition 1 We call subsystem (3} quadratic sta-
ble if there exist positive definite matrix P and positive
real number ¥ for ¥(x) = x7 Px such that the derivative
of V(:x) along with (3), 942 <y 11212 < 0.

Definition 2 For given discrete state set S = {s,,
---,sﬂ,wecall
Si: = {5t d(s,5)d (s;.5) < 1}
the safe region of system (1).
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Proposition 1 Lete = (sas,5),8 = (5,5),5
€ 8, system (3) is quadratic stable if and only if A(s;)
+ B(S;‘)k(&") i8 Stable, and

!
ﬂ[k(ss)] (of - A(s;) - B(s) k(s))™

< 1.

Pmoof since

d(sj,si)[k(i)] = 1. d(s,s) - [k(i)] )

by using Theorem 4.4.1 in [ 10] we can easily get the
result.
3 Control strategy design

For hybrid control system (2) the control design con-
tains two parts. One is design of the switch strategy, an-
other is design of sub-controller. Viewing the controller
as hierarchical, it is apparent that switch strategy belongs
1o the higher hierarchy. It represents the intelligent fac-
tors and plays a key role in system performance. There-
for we firstly present the design of switch strategy, then
we deduce the comesponding conditions by the require-
ments of switch strategy. At last, based on these condi-
tions, the design of sub-controller is presented. First of
all, the following assumption is needed.

Assumption 1 For each s € §, the subsystem
(A(s),B(s)) is controllable.

Definition 3 For each s;, the set

S: =153 = D(s,a,8,t),¢ = 0]

is said to be the uncertain area of (2).

Assumption 2 The uncertain area for each s, is
known.
3.1 Switch strategy

Before designing switch strategy, it is supposed that
each sub-controller has been designed. We use the per-
formance criterion

7= | (M) a(e) + uT(e)Ru(x)dr

in [2], where both  and R are positive definite matri-
ces. The real discrete state is denoted by s;, and the
nominal discrete state is denoted by s;. For simplicity, J
is rewritten as J(s;,s;,¢) in this case. Obviously s; is
knowm, 5; is not known but its range is known, namely
we know s5; € S;, thus we can not compute the exact
value of J(s;,s;,t). However, we can know the ap-
proximate range of J{s;,s;,¢). Since S, is a limit set,
all values of J(s;,5;,2),s; € 5;, can be calculated.

‘We denote

ealsi t) = Eg(](s.—,s,—,t) - J(sissi08))s i = L5k,
(4)

e, (8:,2) = i:]gf(](si,s}-,z) - J(si5852)), 8 = Lyeosk,
(5)

The following switch strategy is put forward then at
every ¢, the nominal discrete state is s;, and the new
discrete state s © can be caloulated by

s* =

arg min{ J{s,,5,¢), J(sp,5,,2) +

eu(8500,) ~ (5,8 ),p = L,k p 5 i)

(6)
Formula (6) presents that
JOs™ s s t) e, (s, 0. ) JOsinsint) +ep(si, )
for each new 5 * ¢ 5;. So if nominal discrete state is s;,
the real discrete state is s; at time ¢_, and pominal dis-
crete state is s * , the real discrete state is s, at time ¢z,
Js™ s, ) J(s® 5" s t)+e,(s" ,0,) <
J(s,si0t) + ey(si0) < J(s5,5,1),
then from (4) and (5) we get which implies that J is
deduced.

It is obvious that the selection of s * can guarantee that
the performance criterion descends with s * . That is to
say that this switch strategy can improve the system per-
formance .

3.2 Sub-controller design

From the design procedure for discrete control above
we can find the necessary condition for the successful
switch strategy is that J(s;,s;,¢) should be bounded.
That is to say that the described system by (3) should be
quadratic stable. Integrating with the foregoing analysis
of system stability we can describe the design of sub-
controller as the following optimization problem.

For nominal discrete state s;, we use the linear feed-
back controfler as u = (s;)=x.

min J(s;, 5.¢)

5. L.

Dyse€ 5., 5, € Sis
!
) ”["(5-)](51_‘4(5&)*3(5.-)!:(5.-))" < L

From Proposition (1), the soltion 4( ;) of the above
formula can guarantee the stability of subsystem
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£ = A(sdz + B(s)k(s)x, 5; € §,.
4 Performance and stability analysis
Using the above swilch strategy and sub-controller,
what impact can be produced on stability and perfor-
mance? Is the whole performance criterion

Jobale = [:(xT(r)Qx(r) + 2 (r)Ru(z))dr

improved? For these, we have the following result:

Theorem For the system on the action of switch
strategy (6) the following conclusion can be drawn

1) The origin z = 0 of the closed loop system is glob-
ally asymptotically stable; .

2) The whole performance criterion of the system on
the action of switching is less than or equal to that of the
system not on the action .

Proof For simplicity, we denote

Liz(z),u(c)) = £T(2)0x(z) + uT(z)Ru(<}.
We firstly prove 2). Assume the switching sequence is

8 =1s(4),j =0,1,~+}, p = 0,
due to the dishubance of uncertainty the real state se-
quence is

§" =ts" (), j =01, 1,0 =0,

for arbitrary positive integer ¥ > 0,

Sw = ts(g), j = 0,1, N1,
the comesponding real state sequence is

Sy = 1s"(g), j = 0,1, , A}
Then

Iy =
[ L) ule))de + o+

4]

K L{x(z),u(e))dr + J(s(tnd,s* (tn), tw) <

e

[I'L(x(r),u(r))dr o+

]

Sy

[ Laled,ule)de + Hsleyads* Cenadotn) =

I.la'-l

J;IL(x(r),u(r))dr + +I:~

JCsCepor)ss ™ Cowogatvn) - s J(5(0),57(0),0).
According to the selection of S{ty,;) we have
Jn=Inar=J0sCew) s s ™ Comd st ) = J(sCtyar)s
s* Ciwat)stwer) 2 0,

that is to say Jy is monotonically decreasing with &.

L(x(r),ulr))dr +

Thm}_i.n: J exists and
Juhole = }_i.ﬂ_? In < J(s(0),57(0),0).
2) is proved since J(s(0),s*(0),0) is the perfor-
mance criterion of the system not using the switch strate-
gy.
Due to that
2 = A(s"(0))x + B(s" (0))k(s(0))x
is stable, we have
Juate = J(s(0),57(0),0) <+ .
Therefore || x(¢) | - 0,¢—+ o from both { and R
are positive definite. That is to say, x = O is globally
asymptotic stable. 1) is proved.
S Example
Consider the following system
2= Ax + By, u = kx, 1 = 1,2,3,4,
with

§y = 33 = {51:331, 32 = 34 = {32,543,
where
A, = - 0.4093 - 0.3673] ,
- 0.2560 - 1.3675
4, = [- 1.9794 1.8039 ,
- 0.1148 0.5141
-0.4213 - 0. 2905]
Tl 0355 - 11340
A = -2.1236 1.8621 ’
-0.0845 0.6145
B, - B, = 2.496'?],
1.0316
0.3580
B, = By = ]
0.5396

The initial data is x(0) = [1, — 1]7. We define the per-
formance ;

Jue = [ (1) Qe(e) + wT(e) Rule))dr.
Q = I, R = 0.001. Under the effect of discrete state

disturbance, using the strategy as above, we gained sub-
controllers are

ky = [31.9053 4.9668],
k, = [16.6353 27.8952],
ks = [32.5626 3.4203],
ke = [16.0554 28.4114].

The state trajectory is shown in Fig. 3. Apparently the
System is stable
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Fig. 3 System state
6 Conclusion

In this paper we analyze the robust stability for a class
of hybrid system with discrete state disturbance. Aiming
at the affecting of discrete state disturbance, we provide
a switch strategy and a sub-controller design to guarantee
the robust stability of the closed-loop system. As a re-
sult, the performance of the system is improved.
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