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Abstract: We address the disturbance decoupling problem of periodic and rmultirate discrete-time systems via synchronous
controllers. A theory of multifeedback controlled invariant subspaces is developed. Based on this theory, a constructive solution
for the solvability of the disturbance decoupling problem is presented. A complete characterization of the friend set of a given
multifeedback controlled invarfant subspace and a partial characterization of the DDP-PTD solutions are offered.
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1 Introduction

Consider a periodic linear, discrete-time multirate sys-
tem with disturbance

x(t +1) = At + D)x{e) + Bt + Dule) +

[ Duel, e = 0,1,

y(&T) = Cx(kT), k = 0,1,-

(1)
where x( ¢) € IR are state variables, z{¢) € RY are in-
puts, »(z) € R are unknown disturbances, and y (kT)
€ B are outputs. The matrices A(¢),B(t), C and D
are of appropriate dimensions. A(: + &T) = A(:)

SA,B(t+kT) = B() 2B,k = 1,2, Tisthe
period. Note that the outputs are measured once during a
peniod, so system (1) is named a multirate model .
The purpose of this paper is to study the disturbance
decoupling problem for system (1) . The controllers used
here are of the form
u(fT+i-1) = Fa(jT+i-1),

2
£=11":T:j=011:' ()

Recall that the periodically time-varying controllers like
(2) were utilized to multirate control for time-invariant
linear systems in numerous literatre, see, References
[1] and [2].

Disturbance decoupling problem for periodic and mul-
tirate discrete-time linear systems ( DDP-PMD). Find
if possible, a sequence of feedback matrices F,,---, Fr,
such that controller {2) render the outputs y( A7),k =
1,2,+--, of system (1) independent of the disturbances
(£}, = 0,1,-. The corresponding ordered feedback
matrices, if they exist, (Fy,-*+, F,,} will be called a
solution of DDP-PMD.

For the case of T = 1, system (1) is time-invariant,
and the corresponding disturbance decoupling problem
has been completely solved m the framework of Won-
ham’s geometric approach!®) . The solution was given in
terms of the concept of {4, B) -invarant subspace
which plays a key role in Wonham” s theory .

The single-rate version of DDP-PMD, in which the
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outputs are sampled at every step and are required 1o be
decoupled from the disturbances, was solved by Grasselli
and Longhi in [4]. See also References [5] and [6].
Note that DDP-PMD is not a substitute for DLP of [4].
See Reference [ 1] for a brief discussion of a related en-
Inspired by Wonham’ s work, we aim at extending the
standard geometric framework so as to incorporate our
problem. To do this, the concept of multifeedback con-
trolled invariant subspace is formulated. A criterion and
an algorithm are provided for calculationg the maximal
multifeedback controlled invariant subspace contained in
a given subspace. Based on these results, a solution for
the DDP-PMD is obtained.
2 Multifeedback controlled invariant sub-

Spaces

In what follows, &, = ImB,; is the image of map B;,
H is the set of natural numbers, and W, ¥, X are certain
subspaces of B". Given a matrix A € R"™", we have the
kemel of AkerA = {x ER":Ax = Ol and A7'W = {»
€ R":Ax € W}. Define A = (A;,"",47), B =
{By,"", Br).

Definition 1 Suppose ¥V is a subspace of R", we
call ¥ an (A, B }-invariant subspace, if there exists a
sequence of linear mapplings Fy,*-, Fr, all from R* to
R, to satisfy
(Ar+ BeFr)(Ap1+Br_1Fr_)(A1+ B FOV C V.

T =1, then the (A, B)-invariant subspace coin-
cides with the standard (A, B)-invariant subspace.

Now we present a simple lemma which will play a
fimdamental role in the following derivations.

Lemma 1 Suppose W, V are two subspaces of R".
Then the necessary and sufficient condition for the exis-
temcofarmnixF:lR"*IR"suchthat{A+BF)W;
Vis

AW cC V+ B

It is well known that a criterion for ¥ to be an (4,
B }-invariant subspace is AV ¢ V + 8. A similar criteri-
on exists for (A, B )-invariant subspace

Theorem 1 Vis an (A, B )-invariant subspace if
and only if
Az 4,V c

V4 ﬁr + Ar ﬁr_] + '+ Arﬂr_f"ﬂzu@[.

Proof Necessity. Assume that the matrices Fy, ",

Fy are taken such that
(Ap + BeFp)+(A + BiF)V C V.
Expanding the above expression, the necessity follows.

Sufficiency. By using

(Ap A1}V

(V4 B+ + A AsB) + Im(Ar- A2 By)
and Lemma 1, we know that there exists a matrix F,:
R* — &7, such that

(ApAyL+ Ap—AB F )V C
V+Br+ o +Im(Apr-AsBy).
Let W, = (A, + B F|) V. We further have
Ap-A. W C
(V+ Br+ o+ Ap-AaB) + Ar- A B
Utilizing Lemma 1, we may find a matrix F,: R"— R,
such that
(Ap-+Ay + Ap-A3B,Fa)} W, C
Vi+Br+ o+ Ap- AR
Define W, = (A, + BoF;) W,.

Proceed the above discussion repeatedly . We may ob-
tain F;:R" — RY, and W; c R", satisfying W; = (4; +
BF)IW,,.i =3,~,T~-1, and

Ar AW C

V+ B+t AprA 2 B, i =3, T-1.

It is obvious that

Wea = (Ar_y + BroFroa)(Ay 4+ BiF)V.
By using A;Wr., C V + &, we can find a linear map
Fp:R" — ¥, such that

(Ap + BeFp)Woy C V.
Therefore,
(A + BeFr)--(4, + ByF )V Cc V.

Denote the set of (A, B )-invariant subspaces to be
Z(A,B;R"). Given V€ #(A,B;R"), define
F(A,B;V) = [(Fy,, Fp): PR —>RS,i = 1,--+,T,

s.t. {Ar+ BpFr)(Ap_ +Br_y Fr_ ()
(A+BF\)V C Vi,
which is called the friend set of the (A, B }-invariant
subspaces V.

Using the proof of Theorem 1, we may give a com-
plete parameterization of the friend set of a given (A,
B)-invariant subspaces .

Suppose V€ A A,B;R"). Define a set of subspaces
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inR" to be
W, =(Ap Qi) MV + Br v 4+ Ay d;0F80),
i = l,"'.T— 1.

Then, (Fy,-, Fr) € #(A,B;V) if and only if the
following constraints are satisfied '
({4, + BiF)V c Wy,

(Ay + ByF3)(Ay + BiF)V c Wy,

(Ar_y + Br_1Fr_1)(Ay + ByF)V C Wry,
L (AT + BTFT)"'(Al + BlFl)Vg V.

(3)

The above constraints could be transformed into the
compatible matrix equations whose fomm is MAN = Q.
Thus we may find the general solutions from top to bot-
tom (see, e, g., Reference 7). All these general solu-
tions together form a complete parameterization of
F(A.B; V).

Similar to the time-ipvariant case, for an arbitrarily
given subspace K ¢ R", we may construct a maximal
{A, B)-invariant subspace contained in X.

Denote /(A,B;K) = |V c K:V € #{A,B;
E*)}. It follows easily from Theorem 1 that the set
/(A,B;K) is closed under the operation of subspaces
addition.

Proposition 1 The set (A, B;X) contains a u-
nique supreme element sup /(A ,B; X).

Proposition 2  Define the sequence V' acconding
to

V=K,
v =K ﬂ (AT"'Al)ql(u@T + A;rﬁr-l + "+
Ap-A B + V1), i €N, (4)

then V' ¢ V7', i = 1,2,~-, and for some !,! <
dim(X).
Vi sup/(A,B;:K).

These two propositions generalize the comesponding
results for the case of 7 = 1,
3 Solutions for DDP-PMD

In this section, we study the solvability condition of
DDPPMD using the theory of (A, B )-invariant sub-
spaces.

We now analyze the data of the closed-loop system
(1) and (2):

y({i +1)T) =

C(AT + BTFT}'“(A[ + B]F])x(iT) +

Z} C{Ar + BeFr)--(A; + BF;)D,(iT +

J-2+ CW{iT+T-1),i=1.2,,
Analogous to the solvability condition of DDP in [3],
we can obtain a lemma from the above analysis,

Lemma2 DDP-PMD is solvable if and only if there
exists an (A , B )-invariant subspace V, and a sequence
of feedback matrices { Fy,---, F7) € F(A,B;V),
such that

i) V c kerC;

i) ImD + (Ar + BrFy)ImD 4+ -
BrFy)--+( Ay + ByF,)ImD cV.

Note that the above solvability condition cannot be
verified in general.

Utilizing Lemma 2 and the theory of { A, B )-invari-
ant subspace, a verifiable solvability condition can be
developped .

Theorem 2 A necessary and sufficient condition for
DDP-PMD to be solvable is
mD V' N AT (V' + BN N

(AT..,AZ)—I(V' +-§T+ o AT"'Aaﬁ)-
where V" = supZ(A, B;kerC).

Proof Necessity. By using Lemma 2, there must
exist V€ A(A, B;kerC) and (F,, -+, F7) € F(A,
B; V) such that

ImD + (A7 + BpFp)ImD + -+ +
(Ar + BrFr)--{4; + B,F3)ImD c V.
Then we have
ImD cVNAH{V+ BN N
(Ar A} (V + Br+ - + A A3 B).
Because V ¢ V*, the necessity follows.

Sufficiency. Define
K, = AT (V" + #By),

K, I (ApAr-1) V" « Br + ArBry),

+(Ar+

)

Kry = (Ap Ay V" + B+ + A A B),
Kr = (Ap— 4,V + Br+ o+ Ap— A2 B).
Note that AfK; ¢ V" + Br. By using Lemma 1, we
may find a matrix Fr:R” —> RY so that {4y + BpFy) K,
c V*. Note also that
Ar1 Ko ¢ ATMV" + B) + AT B, =
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K+ B + kerdr = Ky + B,
The last equation follows from the fact that kerAy C K.

Applying Leroma 1, we may find a matnix Fr_;: K"
— |9 such that (Ay.; + BroiFro)K; ¢ K. There-
fore,

(Ar+ BrFr)(Ar_ i+ Bry Fro)Ka V7.

Applying Lemma 1 repeatedly, we further find a se-
quence of matrices Fp_;, ', F;:B" — &9 such that

(Ar_isi+Broin Froo DK cKoy,i = 3, T-1
and

(Ar + ByF7) - (Az + BaF2)Kr  C V"

It can be verified that A, K7 ¢ Kr_y + . By using
Lemma 1 we can find a matrix F,:R" — &9, such that
(A, + BiF\)Kr C Kr_1. Thus, a use of Theorem 1
gives

A=)V C V' + B+ 4 Ay A B,
which means that V" ¢ Kr. So, we have
(Ap + BeFr)-{4y + BYF)V" C V",
It follows from Lemma 2 that the sequence of matrices
(Fy, -, Fy) is a solution for DDP-PMD.

Remark Theorem 2 is readily applicable to the
study of multrate control of time-invariant systems.
Suppose system (1) is time-invariant, and our interest is
secking a feedback control law (2) such that the outputs
¥ at specific sampling times ¥ (0}, y(T), ¥y(27),--- are
decoupled from the disawbances. According to Theorem
2, this problem is solvable if and only if

mD V' NANY + BN N
ATV 4 By A2, (5)
where A = A(r),# = ImB(:). Reference [1] has
shown that if we use the asynchronous periodically time-
varying controller
u(jT+i-1) = Fa(jT),
i=1,-,7,;j=0,1,"-",
instead of (2}, then the corresponding decoupling con-
dition, using our notations, is
mDc V' NAYW ATy (7)
It is obvions that condition (7) is more restrictive than
(5). Therefore the synchronous ‘periodical feedback
strategy (2) has more decoupling capability than the
asynchronous periodical feedback strategy (6).

If DDP-PMD for systemm (1) is solvable, then we

may characterize a family of solutions which are inde-

(6}

pendent of the disturbance matrix 1.

Suppose matrices Hy .-+, Hy and Cy, -, Cy are taken
so that ImA; = kerCr = V7, and
ImHy = kerCr_y = ATH(V" + B},

ImHy =kerCy = (Ar )" (V" + Bt 4 Ap A ).

Define

FALB V) =

{(Fy, Fp):F, = - (CB)* CAHH! + Y, -
(CB)* CRYHH} Y Y, ER”",i =1, T}
Corollary Suppose system (1) is DDP-PMD solv-

able, then each element of the set F(A,B; V") is a
DDP-PMD solution for (1.

Proof Define subspaces

K = (Ardr )™V + B+ +
Ar Ay Brosn), i = 1, T — 1.

By using the proof of Theorem 2, any sequence of
feedback matrices ( Fy,* -, Fy) satisfying
((Ar + BeFr)Ky c V7,
(Apoy + BraFro)Ks C K,
¢ (8)
(42 + B2Fy) Ky C Kroaw
(A + ByF\ 3V C Kr
is a DDP-PMD solution for (1).

The relationships (8) could be equivalently expressed
as matnx equations

CA; + BFJH, =0,i =1,~,T. (9)
By using the theory of matrices (see, e.g., Reference

[7]), #(A,B,V") is exactly the set of general solu-
tions of equations (9) .
4 Conclusion

In this paper, the disturbance decoupling problem of
periodic and multirate discrete-time linear systems has
been addressed. A mew concept of multifeedback con-
trolled invariant subspace 1s introduced. A verifiable cri-
terion for a subspace to be multifeedback controlled in-
variant is given. Using these, a necessary and sufficient
condition for the solvability of DDP-PTD is cbtained.
More importantly, we can completely characterize the
friend set of a given multifeedback controlled invariant
subspace and partially characterize the DDP-PTD solu-
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tions .

The stability issue of DDP-PTD is an important topic
for further investigation. Future work should first intro-
duce appropriate notion of (A, B )-controllability sub-
space, then apply it to the disturbance decoupling prob-
lem with stability for system (1).
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