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Abstract: This is concemed with the design of self-scheduled state feedback controllers with guaranteed H,, performance
for a class of plants with variable operating conditions. The plant i3 assumed to be described by a linear interpolation of proper
stable coprime factorizations of the transfer functions at two representative operating points. Base on the notion of quadratic H,
performance, sufficient and necessary conditions for the existence of the state-feedback H.. controller are given as infinite alge-
braic Riccati inequalities that connot be solved directly. Then sufficient condition for the solvability of these infinite algebraic
Riccati inequalities is given in the form of finite IMIs. In this way, the design of the state-feedback H.. controller is reduced to
solving a feasibility problem constrained by these LMIs.
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1 Introduction

Dynamics of almost all plants in reality varies accord-
ing to the condition under which the plant is operated.
An idea to describe the variation of plant dynamics is in-
terpolating a number of representative models defined at
representative operating points, In [1~ 5], the plant is
assumed to be described by a linear interpolation of
proper stable co-prime factorizations of transfer functions
of two representative models, Stabilization problems
have been extensively considered using fixed controllers
i [1,2,4,5] and using interpolated controllers which
are linear interpolations of co-prime factorizations of two
stabilizing controllers for the two representative models
in [3~5].

In this paper, the design of gain-scheduled state-feed-
back controllers with guaranteed H. performance for
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such interpolated plants is considered. It is assumed that
the measurement of the linear interpolation parameter is
available in real time. The resulting state-feedback H,,
controller is time-varying and autoratically’ gain sched-
uled’ along the trajectory of linear interpolation parame-
ter. Based on the notion of quadratic H. performance,
sufficient and necessary conditions for the existence of
the state-feedback H. controller are fistly given as infi-
nite algebraic Riccati inequalities that cannot be solved
direcly. The sufficient condition for the solvability of
these infinite algebraic Riccati inequalities is given in the
form of finite IMIs. In this way, design of the state-
feedback H. controller is finally reduced 1o solving a
feasibility problem constrained by these LMIs.

2 Problem formulation

Let &y and G; be two representative transfer function
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models of G that are defined at two representative operat-
ing points. The proper stable coprime factorization of G,
and G; are defined as:

G, = ND7', i = 1,2, (1)
where N;, D; € RH., . The plant G is described as linear
interpolation of the factorization(’ ¢! ,

G = ND',
N=g N +(l-a)- N, (2)
D=a- D +(1-a)-Ds,
where ¢ (0 < @ x 1) is a parameter which represents the
vaniation of the plant dynamics.

Lemma 1'¢'  Suppose thc minimal realization of
G:(i = 1,2} is {A;, B;, C;,0], then N;, D; satisfying
(1) are
A; - BiF; 3;‘]

C; ol’

[Ai - BiF; B’:].
-F 1V
where F; is a matrix making A; — BF; stable.

From Lemma 1, we can get the state-space descrip-
tion of {2).

Lemma 2 The interpolated plant (2) can be de-
scribed by the following equations in state space:

{spcr) = 450« Blau),
y(¢) = Cla)x,(s),
where (1) is the control input, y(:) is the measured

-

Dy =

output, x,{z) is the state of the plant, and
A[—(l—a)BIFI EB[FQ
A”(")sl (1-a)B,Fy Ag—aBze]'
B,(a) = [(1_a)3,] Gla) = (€ G,

(4)

Proof From (2) and Lemma 1,
N=aN +(1-a)lN, =

[ A, - B F, 0 aBy
0 A - ByFy, (1 - 4)31] -
L ) Csy 0
Afa) - B(a)[F, Fo] Bp(a)]
C,(a) '
D=eD +{1 -a)D; =
A - B Fy 0 aB\
0 Ay — BoFy (1-a)32]=
- F, _F I

[Ap(ﬂ) - BP(C!)[F[ Fz] Bp(ﬂ)]
_[Fl Fz] I )
Therefore, from Lemma 1,

C - ND-' = [Apl:a) BP(a)
- “lgla) 0
Let the weighting system be

{:-‘:..(t)=A..x..(t)+3w|WCt)+B.zy(t),
z(2) = Cyx,(2),
where w(t) is the exogeneous input, z(} is the con-
trolled output, x,(t) is the state of the weighting system.
Combining (3} and (5), the overall system can be
described as:
Aa) xp(t)]

[ 1 %,(1)
[j t] [ B,aC(a) A..wa(s) *
o2

| o - o.cl 7, :

(5)

(6)

(c)

y(1) = [G(a) o][

Denote z(t) = [xp(.c),x.,(t)JT then (6) is trans-
formed to:
2(2) = Ala)x(s) + By(a)w(e) + Bala)ult),
2{t) = Cy{a)x(1),
}’(E) = &z(ﬂ}x(t),

(7)
where
( A(a) 0
i@ =gl
. 0y - B,(a)
Bia)=[, | B0 - [* 7] @
L €i(a) = [0 C.1, Cila) = [G(a) O]

The purpose of this paper is to design a state feedback
controller u(2) = K(a)x{:) that makes the closedloop
systemn stable and satisfies || C. [ = < ¥ for a given
y(y > 0) forany a{¢) € [0,1]. The closed-loop sys-
tem is as shown in Fig. 1.

Remark 1 - In this paper, the H,, control problem is
formed by adding a weighting system. Similar results
can be obtained with the same analysis in this paper for
other formations of H.,, control problem of the interpolat-
ed plant.
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Fig. 1 The closed-loop system

3 Design of the self-scheduled state-
feedback H. controller

Lenuma 3”1 For the system

(1) = Az(z) + B w(z} + Byu(s),
z(s) = Cyx(s),
y(t) = Cax(e).

The sufficient and necessary condition for the exis-
tance of a state feedback controfler u(¢) = Kx{¢) which
makes the closed-loop stable and satisfyies | G, | » <
Y is:

There exist (¢ > 0} and P{P = P" > 0) satisfying
PA+ AP 4 p(%ﬁ,m_ eB,BDP + CTC, < 0,

K can be constructed as: K = ~ 5 BIP.

From Lemima 3, we can get the following lecma.:

Lemma 4 For system (7)), the sufficient and nec-
essary condition for the existence of a state feedback
controller u{¢) = K(u)x(t¢) which makes the closed-
Joop stable and satisfying | G, | = < 7 is:

There exist (¢ > 0) and P(P = P' > 0) satisfying

Pi{a) + A%a)P + P(ﬁél(a))ﬁ'{(a) -

eB,(2)B3{a)P + CTa)C (a) < 0. (9
For any ¢ € [0,1]. K(a)} can be constructed as:
K(a) = - %B;(G)P.

Multiplying P! from each side of (9}, we can get:
AP & PA(e) + ﬁizl(am?(a) -
Eﬁg(ﬂ)pg(a) + P"&;E(a)&l(a)P'l < 0.

(10)
Denote: ¢ = P!, then (10} is transformed to:
A(a)Q + QA"(a) + 5B:(a)BN(a) -

eBy(a)B(a) + OCT(2)Ci{a)Q < 0. (11)

Lemma 5§ For the system (7}, the sufficient and
necessary condition for the existence of a state feedback
conoller {¢) = K{a)}x{r) which makes the closed-
loop stable and satisfying || G || « < ¥ is:

There exist e(¢ > 0} and Q( @ = QT > 0) satisfyng
(11) for any o € [0,1]. K(a) can be constructed as:

K(a) = - SBHa) Q.

From (4) and (8), we can get:
;l(a) = i] + miz, El(ﬂ) = El:

Bi(a) = Bu + abm, Cula) = &, D
where

A-B,F, 0 0O

A=| BF A, 0|,
B €, BaC: A,

" B\F, B,F, 0]
Ay = | -ByF, -B,F, 0O,

L 0 0 o

0 07 B
B, = Ojl, le=[32 Bn = | - By,

- B OJ 0
c,=[0 0 ¢].

Substitute (12} into (11),(11} is converted to:
Fo(Q) + aF (@) + a*F2(Q) < 0, (13)
Fo(Q) = 410+ QAT+ 5BiBT-BuB} + Q T1C10,

(14)
Fi{Q)=A,Q0+QAT-eBxBL - eBnBY, (15)
F(Q) = - eBnBY. (16)

It can be observed that Fo( @), F,(Q), Fo(Q) are
Symmetric matrices .,

Theorem 1 For system (7), the sufficient and nec-
essary condition for the existence of a state feedback
controller u(t) = K(a)x(t) that makes the closed-
loop stable and satisfies || G | « < ¥ is: there exist
e{e > 0) and Q( Q" > 0) satisfying (13) for any a{z)
€ [0,1]. K(«) can be constructed as;

K{a} = - %E%(a)o_l.

In Theorem 1, sufficient and necessary conditions for
the existence of the state-feedback H., controller are giv-
en as infinite algebraic Riccati inequatities that cannot be
solved directly, sufficient condition for the solvability of
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these infinite algebraic Riccati inequalities will be given
in the form of finite LMIs in the following. In this way,
the design of the state-feedback H. controller is finally
reduced to solving a feasibility problem constrained by
these TMIs,

Lemma 6 Let H be a 2-dimensional convex hyper-
polyhedron that includes 7 = {{a,a’) | « € [0,1]} in
it. Denote m{3 < m < o} vertices of H are: (x;, ;)
{i = 1,2,*,m). If thers exists { such that:

FD(Q)+xiFl(Q)+yiF2(Q) <0,1i=1,2,,m,

(17)
then (@ satisfies
Fo(Q) + aF (Q) + a®F2(Q) <0, (18)
foral ¢ € [0,1]. Here Fo(Q), Fi{(Q), Fo(Q) are
assumed to be symmetric matrices.

Proof Since H is convex, and 7 = {{a,a?) | 2« €
[0,1]} is included in H, any point in 7 can be described
as a convex combination of the m vertices of H. That is
to say: for any (ag,ad) € T, there must exist A,,"*,
Am,satisfyingiki = 1,4; = 0. Such that:

=]

ag = ik;x,-, aé = E)‘m.

i=1] =]

If there exists a Q@ such that (17) holds, then:
Fol Q) + 5, F(Q) + i F (@) <0, (19)
Fo(Q) + :F\(Q) + 2 F2(Q) <0, (20)

FolQ) + 2.F1(Q) + yF2{ Q) < 0. (21)
Multiply (19) by A,, multiply (20) by 4,,"++, multi-
ply (21) by A,,, and take the sum of them, we can get:
SAFQ) + (A FQ) + (A F Q) < O,

pal i=] i=]
Fol Q) + aoF1{Q) + a%Fg(Q) < 0.
Therefore (18) holds for all « € [0,1].

Since the size of H is closely melated to the conserva-
tiveness of the evaluation, it is necessary to construct a
small size H for sharp evaluation.

Letthe m (3 < m < <) vertices of H are: (x;,y;)
(i = 1,2,+,m). The sufficient condition for the solv-
ability of (13) forall a & [0,1] can be described by the
following condition :

Fo(Q) + xF(Q) + yF2(Q) <0, i = 1,2, ,m.
(22)

Substitute {14} ~ (16) into (22), {22) can be trans-

formed to the following LMI using Schur complement :
[-A QC}]>0£=12---m (23)
CQ 1 ’ T

where
A= —(;‘i['l-xiiz) Q— Q(H] +5532)T—ir1§|.§.1r+

E(Bz[ﬁgl+xiﬁz|ETp+x,-§nB;1-I-y,-EngTzz).
Theorem 2 If there exist e{e > 0) and Q( Q" >
0) satisfying {23), then the state feedback controller

alt)=K{a)z(t), K(a)= —%EE(G)Q_I

will make the closed-loop stable and satisfy || G |l «
< Y.

In Thecrem 2, the design of the state feedback H,
controller is converted to a feasibility problem con-
strained by finite LMIs that can be solved by LMI comn-
trol toolbox .

4 A design example
Suppose
5+ 2 s +4

= DG+ PTG oG-
The minimal realization of G, and G, is

A1=[(1] (1]], Bl=[(1]], ¢ =12 1],

A = [T _32], B, = [‘:] ¢, =[0 1],

and F,, Fp are selected as:
Fy=[7 5], F; =1 4].
Suppose the weighing system is
x,(t) = 2. 7w(t) - 2.7y (1),
[z(s) = x._,.(s).

The purpose is to design a state feedback controller
that makes the closed-loop system stable and satisfies
| Gull « < 1.

l
(2.9 4

06

adr
02

0 0.2 0.4 0.6 08 l

Xz
Fig. 2 Construction of
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Here H is constructed by four straight lines;
y=x, y=2x-1, y:%x-%, ¥y=0
as shown in Fig.2. Four vertices of H are
1 52
©,0,+.0,¢2. 2, a.n.

The solution can be found by MATLAB:
W858 -~ 1060.%65 1003518 - 3.8 6.366
- 105968 175,929 - IR.IR7 M5 - 29408
Q= BB ~1RIBT7 AP -1UL7ZS 1L.B% |,

SO0 MAS - LTS MBI 14610
(3@ -29B  LB% L4l 545
e = 273.1357.

And the self-scheduled state feedback H. controlier can
be readily constructed:

u() = - £BJ(a)Q (1),

Eg(a}z[ﬂ ¢ 4-4a 1-go 0]

5 Conclusion

This paper has considered the design of self-scheduled
state feedback controllers with guaranteed H™ perfor-
mance for a class of plants with variable operating condi-
tions. Design of such a controller is converted to solving
a feasibility problem constrained by finite LMIs that can
be solved by commercially available LMI control tool-
box. The effectiveness of the proposed algorithm is
demonstrated by a design example .
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