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Abstract: A novel echnique, that combines the FLC and neural netwark (NN) techniques, to contol the gas tungsten
arc welding (GTAW) process is presented. This technique overcomes the limitations such as the dependency on the experts for
fuzzy rule generation, the fuzzy set that is non-adaptive, etc. The adapiation of membership function as well as the self-orga-
nizing of fuzzy rule are realized by the self-leaming and competitiveness of the NN. This approach facilitates a mechamism for
an automatic determination of the fuzzy rule and in-process adaptation of membership function for en advanced welding process
control. This is becanse a fixed membership function cannot guarantee the required system performance, as the arc-welding pro-
cess is a highly time-variable system . Taking GTAW process welds bead width that regulates the system as the controlled plant,
the proposed algorithm has been verified 10 be highly effective for an arc-welding process. Compater sinmlations confinm that the

characteristics of the system have improved notably when compared with a mumber of curmently available methods.
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1 Introduction

Fuzzy Logic Control (FLC) is a knowledge-based
control strategy that has proven its potential in industrial
control applications in recent years. It can be used when
a sufficiently accurate, yet mot unreasonably complex
model of the physical system to be controlled is mmavail -
able or when a precise measure of performance is either
not meaningful or practical. Fuzzy legic is much closer
in spirit to human thinking and natural language than the

traditional logic systems. The control design problem
makes use of empirically acquired knowledge of the pro-
cess operation instead of analytic framewark. The core
of the FLC is its linpuistic or rule based fornm of knowl-
edge expression.

FLC is especially suited for the ill defined and uncer-
tain systems where conventional mathematical tools {e.
g. differential equations)} based on modeling and control
fail. Arc welding is one such process that involves heat
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and metal transfer, phase transformations and many un-
known disturbances and thus difficult to model by con-
ventional mathematical framework based approach. The
fuzzy logic control is a well-qualified candidate for such
a process. Langari et al'! and Satoshi Yamane et al®!
have shown encouraging results with the control of weld
pool by means of FLC. They used fuzzy IF-THEN rules
to model the qualitative aspects of expert' s knowledge
and reasoning process of the controlled arc welding pro-
cess. However, there are stll some aspects of this re-
search that need to be addressed. In fuzzy logic control
strategy the membership functions for the fuzxy sets are
determined by the expert prior to on-line control process
begins and they nomally remain unchanged during the
contro! process. This may bring unsatisfactory results
when the controlled plant is time-variable or dishmbance
exists in the process. In addition, the determination of
fuzzy mle and the membership function is heavily depen-
dent on the experts’ judgment. In this approach, satis-
factory results may not be possible if the level of experi-
ence is not adequate. Thus, an on-line automatic funing
of the membership function according to the varying
plant characteristics and pre-defined performance require-
ments is necessary for the effective control of the weld-
ing process. It would also be beneficial to develop a
common methed for transforming human knowledge or
experience into the rule base of FLC for this application.
This requires that there must be a provision to detect the
changes in the membership functions and to antomatical-
ly determine the rule-base of the FLC using the data ob-
tained directly from the arc welding system.

Among machine-intelligent adaptive control systems,
neural network (NN} control is also a viable altemative
to FLC. Neural networks can be trained to mimic bio-
logical nevral systems in performing functions such as
leaming and pattern recoguition. 1t has been successfully
applied to a range of process controls including arc weld-
ing process control2-4] | Although, newral network can
automatically leam from the samples of data, it lacks the
explanatory ability, While FLC can perform approximate
reasoning , it is usually not self-adaptive. The desire for
a learning ability in FL.C encourages one to incorporate
the leamming ability of NN into FL.C. This has prompted
many researchers to search for ways o combine the two

techniqu:s[s'ﬂ.

In light of the above, the objective of this work is to
embed NN into FLC to realize a fuzzy rule generation
mechanism that is both self-organizing and self-adaptive.
This should then provide for the fine-timing of member-
ship function for arc welding process control .

2 Neural network based fuzzy logic con-
troller
2.1 Fuzzy logic control in arc welding process

Figure 1 shows the basic structure of fuzzy logic con-
trol of an arc welding system. In a control based appli-
cation, the error { £} and change of error ( CE } are cho-
sen as the inputs to fuzzy logic controller, while the
change of control input to the arc welding process is se-
lected as the output of the FLC. In a system where weld
pool is to be controlled, E may be defined as the error
between the desired weld feature such as width and acto-
al width of the weld pool. The control input to the pro-
cess may be the welding current, travel speed etcl*].
This enables the formulation of simple linguistic rules
based on observation or simple study about the process.
In this work, the fuzzy controller with min as the AND
operater, max as the OR operator and center of area de-
fuzzification is used. A bell shape function is used as the
membership function with the following form:

fx) = e, (1)
where m and ¢ are the center and the width of the mem-
bership function.

Rule |
Base
R E (Gisy -

Fuzzy- F:
CE - F [nferet]
- || fication Engine

= e

Fuzzy Gisp

Fig. | Basic structure of fuzzy logic contro! are welding system
2.2 Structure of the neural network based on
fuzzy logic controller

By incorporating NN into fuzzy logic controller, the
fine mming of membership function and automatic fuzzy
logic rule generation can be realized. The feed forward
network as illustrated in Fig.2 is incorporated to realize
the above fuzzification, inference engine and defuzzifi-
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cation function.

Fig.2 also shows the structure of the FLC realized by
a feed forward neural network that has a total of 5 layers
with each layer performing different functions of the
FLC. Node types are shown as squares and circles to
distinguish them. The square-node means that the pa-
rameters of the node need to be regulated, while the cir-
cle-node means that the parameters of the node remain
fixed during the leaming process of the network. The ar-
rows between two layers of nodes indicate the direction
of the signal flow.

S5th Layer

Fig. 2 Structurs on NN based fuzzy logic controller

The structure of the FLC shown in Fig. 2 resembles a
feed-forward neural network. The three components of
FLC, namely: fuzzification, fuzzy inference and de-
fuzzification, have been incorporated into this neural
network. The different layers of this NN perfonn differ-
ent functions of FLC. This ncumal network like FLC
makes the adaptation of the membership function as well
as the dynamic generation of self-organizing fuzzy logic
rule possible. The brief description of the function of
each layer is given below. For detail explanation please
refer to [8].

Function of 1st layer:

Function of 1 st layer is to transfer the inputs to the
2nd layer.

E, (i=1),
wt = {CE, (i=2), @)
otV = aEl) = u(,l), i=1,2,

Function of 2nd layer:

The 2nd layer performs the fuzzification task. For the
ith node in 2nd layer, the input 0, activation a{?) and
output 04 are defined as follow:

a2 Z LM’
| % (3
(2
o = o = e

Here, my; are gj; the center and width of the ith member-
ship function for jth input (f = 1,2} in the first layer.
Function of 3rd layer:
The 3rd layer performs fuzzy AND operation. For the
ith node, the input nl, activation ¢!” and output »”
are as follows:

{HE"*) - min( u}?i) ’ ME;)) 3

(4)
o = o = g

where j, and j, are the indexes for nodes in the 2nd lay-

er. These nodes respond to one of the membership func-

tions of input 1 { £) and input 2 ( CE), from which the

ith node In 3nd layer receives the signal.
Function of 4th layer:

= R,

The 4th layer performs fuzzy OR operation:
n[i‘) = IILE.'K( uﬁ;? ’ u}:? LA H'.E:P ) '
{ (@ {4) (4) )
I = @& =0,

where jy, j2, ", J, are the indexes of the nodes in the 3rd
layer from where the ith node in the 4th layer receives
the signal.

Function of the Sth layer:

The 5th layer performs defuzzification by the center of
area method. Thus we have:

g ) i mﬂiug?}
35 = =1 ,
S oalp ©)

i=t
o = af = off,
where m; , g; are the center and width of the ith member-
ship function of the output ( CU).

The leaming process of the network, which uses the
back-propagation algorithm, refines the parameters in the
square nodes,

2.3 Automatic determination of the linkage be-
tween the nodes of 3rd and 4th layer

The purpose of the automatic determination of the
linkage between the 3rd and 4th layer is to dynamically
generate the ‘THEN' part of the rule for observed sam-
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ple data for a pair of input and output variable terms.
The steps required for this task are specified below.

I ) Using the c-means clustering method and the
samples obtained, generate the center valoe of m; of
each cluster for cach inpit/output variable. The cluster
number of a variable, which equals to the term number
of that variable, can then be chosen according to the
complexity of the controlled process.

II') The width of each membership function o; can be
determined according to the pre-defined overlap parame-
ter.

Il ) Construct a network in which the nodes in 3rd
layer fully connect with the nodes in the 4th layer at
start. This network is similar to the network in Fig. 2,
except that the CU (sample data, which is not the same
as network output in Fig.2) is fed into the network ac-
cording to the direction of flow. For cach pair of sample
data, the inputs ( E and CE) are propagated to the 2nd
and 3rd layer according to the direction of flow. Simi-
larly, the output { CU) is then propagated to the 4th lay-
er in crder to generate the output of layer 4 with the fol-
lowing equation ;

(C'U’—m:l2
o y k= 1,2,---,M, (7)

654) = e

where M is the number of the sample data.

IV) With the cutput in layers 3 and 4, perform the

competitive leaming in these 2 layers. Here, it is as-
sumex that the output of the 4th layer shows the degree
of win of the output data in layer 3 that comesponds to a
pair of sample data. The weights for each link from ith
node in 3rd layer to the jth node in 4th layer, w; can be
obtained by the following competitive learning :
o). {8)
For the whole set of sample data, perform Steps 1 ~ 4 to
get the value of w;.

V) For the ith node in 3rd layer, find the maximum

weight :

Wy = - 654)(!0,;: -

wy = max(wn.w;z,"',w,;,), (9)
where p is the number of the 4th nodes and J is the index
of the 4th node with the maximum weight.

VI) The ith node in 3d layer has a link only with the
node in the 4th layer that have the maximum weight of
the ith node. In this way, the linkage can be detennined
for every node in the 31d layer.

2.4 Training algorithm for the neural network
based fuzzy logic controller
The aim her is to give the sample data
(Ey,CEy, CUY),(Ey, CEy, CUy) -+ (Ey, CEy, CUy),
(10)

and the link between the 3rd and 4th layers so that a fine
mming of the parameters of square nodes could be made
to minimize the following error.

M
TE = , TE,, {11)
i=1

TE, = %(CU; ¢, {12)

CU,Cl are the sample data and output of the neural
network, respectively. The back-propagation algorithm
is used to regulatc the parameter. The error is back
propagated from the output layer to the hidden layers in
order to refine the parameters of square nodes. The
training algorithm shown below starts from the output
layer (5th layer) to the 2nd layer.

5th layer:

In this layer, the center and width of the membership

()
ol

m = m; + 3(CU - COY) - <53,
i 7 ‘ i Zﬂ'ﬂlg)

o = o; + 7 CU, - CO}) +
maP( 2 culd) - (20 meul)u

(Eai"(ﬂ”)z (1)
JTE, 93TE, 3af® L
s _ L _ L, = -
3 = an® = 2g® ap® T CU, - CU;.
(14)
4th layer:

In this layer, no parameter needs to be regulated. On-
ly the emror needs to be computed.

ma (2 ou) - (2 mou)eo;

354) =& 5)
! (2 anfY
{15)
3d layer:
Only emor needs to be propagated in this layer.
& = g0 (16)

Here j is the index of the nodes in 4th layer which con-
nect with the ith node in 3rd layer.

2nd layer:

In this layer, the parameters for the membership func-
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tion of the controller input nsed to be regulated.
According to Eq. (10)
ITE, o 2{ul¥ - my)
mif = m,,’. - qaajz}e I .az » (]7)

i

ATE; o 2uf - m)’

9 = %= 1 G e a0 U8
where
2TE;
5;}'5 = .{Tr‘?k,
- 81, if a!¥ is the minimun of all
G = input to the kth node in layer 3,

0, otherwise.
(19)
3 Simulation results

Consider the gas tungsten arc welding (GTAW) as an
example of a process to be controlled, where the direct
welding parameter (DWP) is the welding pocl width and
the indirect welding parameter {IWP) {also, control
variable) is the welding current. The main aim of this
control problem is:

Given the sample data of GTAW process, design the
neural network fuzzy controller which provides the U{ k)
50 as to obtain the output ¥(% + 1), which approaches
desired output.

3.1 Obtaining of the sample data

The aim of this step is to obtain the sample data to be
used for training the fuzzy neural network (FNN). In
this simulation the sample data is {{f,, W),k = 1,2,
-+, N}, where N is the number of the sample data and
i, W, is the welding current and width of welding pocl
at time steps of %, respectively. To obtain the sample
data, the welding current at step & £, € [ Liins e ] 18
given, where [, is the minimum required welding cur-
rent to form the welding pool, while /. is the maxi-
mum welding current to ensure that a bum through does
not take place. At each step &, the welding width W,
comesponding to welding current /, is calculated .

Assuming that the heat intensity g, at time step k to
the welding wotk piece is

a = %:%fjexp(— =), (20)
where 7: efficiency of arc, /;: welding current at time
step k, U arc voltage, h: thickness of work piece, r,:

efficient heat input radius, r: distance from the point in
the work piece to the center of heat source.

The heat somrce used in these simulations follows
Gaussian distribution and the weld pool width is the
maximum width of melting area. By calculating the tem-
perature distribution of step % according to the melting
point of the work piece material, the welding pool width
can be obtained .

The temperature distribution has been calculated with
the help of ABAQUS software package!®!. The condi-
tions for the calculation are shown in Table 1.

Table 1 Calculation conditions
material 1Cr18NiST:
size of work-piece 250rmum x 100mm x 1mm
7 0.65
i} 10.0V
Ta 3.0mm
v (torch traveling speed) 1.5mm/s
L 20.0~ 60.04
liquid conductivity 2.0W/{mK)
solid conductivity 20.0W/(m"K)
specific heat( liquid and static)  735.01/ (kg K)
liquidus temperature 1723K
solidus temperature 1523K
specific weight 7200kg/ our”
latenr hent 2.47 x 10°)/kg

Fig.3 shows the sample data at every step k(& = 1,
2,-+,148).

a0

5
&
1]
2 40
£}
% 2

0 50 100 150
5 8
3
26 MMW '
§ 4 ’W\f
g 2 1
-
A

0 50 160 150

Fig. 3 Sample data for welding current and pool width
3.2 Approximation of process model

This step aims to configure the model between the
welding current and pool width for simulation purposes.
Althouph the ABAQUS s/w could have been used for
this propose, it was decided to realize this calculation by
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other method mainly due to the fact that the calculation
speed of ABAQUS is very low for our simulation pur-
poses. This relationship between the welding current and
pool width was set up using BP network based on the
fact that BP network can approximate any function with
any degree of similarity. This step is not required for the
on-line control of a real process as the output of the pro-
cess comesponding to input can be obtained directly from
the plant.

The relationship between welding pool width and weld-
ingmmenIcanb‘eexpmsedbythefollowing equation :

W(k'l' 1) =
f(W(k),W(k—l),"',W(k—ﬂ-),
k), Kk-1),,I{k-m)), (21)

where the function f represents a memory-less nonlinear

function.

Of the sample data used in Fig.3, data numbered 11
~ 148 were chosen as the training sample data. The es-
tablished model is used to replace the practical GTAW
process during sinmlation.

3.3 Simulation results for FNN control system
The steps taken during the simulation are as follows:
Step A The sample data for training FLC were gen-

erated from Fig.3 using the following expression:

{(E,,CE,),CU, k = 11,12,--,148] ,

Ep = Wik+1) - W(k),

CE, = £, - E;, {22)
Cl, = I - L.t

Step B Perform the clustering of £, , CE;, and CUy
in order to assign the center of each cluster as the center
for each membership function. Choose the cluster num-
ber as 3, which corresponds to Negative, Zero and Posi-
tive respectively. Obtain the width comresponding to each
membership function by choosing the overlap parameter
as 1.5.

Step C Competitive learning is used to obtain the
link between 3 and 4 and *THEN' part of rule can be
obtained. Table 2 is the rule base obtained by competi-
tive leaming using these sample data sets. From this, we
can see that the link between 3rd and 4th layer has a
strong explanatory ability. The above fuzzy mles are
corresponding to those in [1].

Table 2 The rule base obtained by competitive

learning with 138 sample data set
shown in Fig.5 nombered 11 ~ 148th

E
CE
Negative Zero Positive
Negative N N N
Zero N Z Z
Positive P P P

Step D Using the obtained structure of FNN and
sample data sets above, perform an off-line tuning of the
membership function by BP algorithm. The membership
function after the training of BP network is shown in
Fig.4.

1 \
9 0.5 0 0s 1
1
0.5 /M‘\
0
-1 05 0 03 1
1
0t \
0
Eh ~0s 0 0s |

Fig. 4 Membership function of CU (upper), £ (middle) and CE
(lower) after the off-line fine tuning by BP aigorithm

Step E  Construct the close loop with the form of
Fig.1 to realize the close loop control of GTAW pro-
cess. In every control cycle, tune the membership func-
tion according to the real input and output of the GTAW
PTOCESS .

7
3
g6 J
< ,
£ s -=-———J? L-r—-
8
4
0 50 100 150 200
m -
=
E 40
[+]
20

0 S0 100 150 200
time
Fig. 5 Control results with the fine tuning of
membership function

Fig.5 shows the control results and wekding current at
every control cycle that were obtained vsing the proposed
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neural based fuzzy logic controller. In this figure, the
solid line represents the desired cutput while the dashed
line represents the cutput of the control system. This
method of interpretation applies to the remaining figures.
4 Comparison with other methods
4.1 FLC without on-line fine tuning

Fig .6 shows the result without the on-line fine-tming
of membership fimction. The membership function is
obtained directly from the off-line leaming by using the
sample data shown in Fig.3. It can be seen that there
exists certain degree of oscillation and steady state error.

H
=3
8
-
o
=
4
4] 50 100 150 200
&0
B
§ 40
20 s,
0 50 100 150 200

time
Fig. & Conirol results without the on-line
tuning of nembership function

4.2 PI controller

According to Suzuki and Hardt et all™®!, the dynamics
for GTAW can be expressed as a first order transfer
function between the welding pool width and welding
cumrent, This is expressed as follows:

W(-i) KP

G — - M 23
() I(s) s + 1 (23)

It’ s ZOH equivalence form is

b
Gl2) = ——, (24)
z+ a,
where
@, = - e'rI,, by = K1+ ap)

and T = sample time.

By using the dynamic model realized by the BP algo-
rithm described in 3.2, we can generzte a sequence that
can be used for identification of parameters a, and b,,.

Parameters can be obtained by the least-squares
method. The following standard structure of PI controller
is used!'!]

w(z) o KT

e(z) DT rplz - 1)

By using the transient-response method! ™}, the pa-

rampeters of P controller K = 3.6873 and Tp = 1. 0642

can be determined. The control result obtained using the
PI controller is shown in Fig.7.

(25)

pool width /mm

current /A
8 & 8

0 50 100 150
Lime step

Fig. 7 Output results of PI control system
4.3 STC/PP method
The STP/PP method used here is the same as that
used by Suzukil', the details of which are not detailed
here. The closed loop model is the same as that given in
[11], which is of the following form:

Cals) = 74T (26)

The parameters of GTA process e, and &, are updated
in every control cycle with the following recursive least
squares method .

(@ = Gusy + Pfal(ye - gi_1%),
6 = (a, 8],
1= [-na walh, (20
s - %'Pk—l _ Pk-l‘?‘f"IPkA_
A+ EiP By
The effect of control of the STC/PP method is shown in

Fig.8.

From the above comparisons, it can be clearty seen
that neural network based FLC has the better propesties
when compared with the FLC without on-line tming, PI
control method and STP/PP method for the control of
the GTAW process for the case of welding cunrent and
welding pool width as the input and cutput respectively.
It is also evident that the fine tming of membership
function can improve the characteristics of the system.
The PI and STC/PP methods are based on the assump-
tion that the GTAW is a linear system. This assumption
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pool width/mm

80
a0}

4

current /A

20

0 50 100 150
lime,/s

Fig. 8 Control result of STC/PP control system
leads to the neglecting of nonlinear properties of GTAW

process, which results in a clear diversion between the
established model and the real process. As the result of
this, the control resnlt is not as good. In STC/PP
method the process model is updated acconding to the re-
al input and output of GTAW process. This somewhat
compensates for the non — linearity of the process by lin-
earizing the model in a small space. This leads to better
dynamic properties than those realized by the PI control
system .
5 Conclusions and discussions

This work confirms that a neural network based fuzzy
logic controller can be used effectively in GTAW process
control without deriving a mathematical model of the
process which is obtained with the help of computer sim-
ulation results. Unlike the traditional FLC, neural net-
work based FLC incorporates a leaming ability which can
be nsed in the fine tuning of membership function to
minirize the output error of the control system. This al-
lows for the properties of the control system to be im-
proved. It has been shown that the rule base can be gen-
erated antomatically by the proposed method. This is
very useful as the proposed technique does not rely heav-
ily on the inputs from an expert. It has alsc been shown
that the proposed neural petwork based FLC with on-line
fine wning has better characteristics than those obtained
using traditional FLC without on-line fine-tuning, PI
control and STC/PP based approaches. However, when
the input of the system is subjected to an abrupt change

{e.g. welding pool width from 6 ~ 5 mm in time step
100 in Fig. 6), the control variable near this time step
comsists of some oscillations. These oscillations can be
reduced by incorporating the change in input variable in
the performance index {equation (17)).
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