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Abstract: The fault diagnosis problem for a class of nonlinear systems with unknown parameters in both states and inputs
is discussed. Under some geametric conditions, the systems are transformed into two different sobsysterns. One is not affected
by actuator faults, so the nonlinear adaptive observer and the parameter adaptive law cam be designed. The other whose states
can be meaziured ig affected by the faults. The observation scheme is then used for model-based monitoring and fault diaghosis .
Selection of threshold is investigated. Fmally, a numerical example is used to illustrate the applicability of the proposed method.
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1 Introduction

Owing to the increasing demand for high reliability for
many industrial processes, fault detection and isolation
(FDI) algorithms and their applications to a wide range
of industrial processes have been the subjects of intensive
investigation over the past two decades. Fruitfol results
can be found in several excellent survey papers’* ~®! and
bookst”~*!. Various model-based methods for the FDI
have been developed. Among them, the cbserver-based
FDI technique is one of the important schemes.

However, most research work on FDI have been con-
centrated on linear systems, and only limited results for

Recetved date: 1999 - 07 - 28; Revised date:2000 - 07 - 10.

vonlinear systems were obtained. In [10] FDI for bilin-
ear systems withont any uncertainties was discussed.
Fault diagnosis for a class of nonlinear systerns using
disturbance decoupling principle was investi in
[11]. But in some cases, the perfect disturbance decou-
pling from fanlts or residual is not possible (see [12,13]
for example), so robust or adaptive observers are needed
to be designed for FDI. More recently, some results on
FDI for special classes of nonlinear systems are available
{e.g.[14~16]).

In this paper, we consider the FDI problem for a class
of nonlinear systemns with unknown parameters in both
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states and inputs. At first, under some geometic condi-
tions, the system is transformed into two subsystems.
The first subsystem is in the so called adaptive observer
canonical form which is decoupled from actuator fault.
The other is affected by the fanlt, but its states can be
measured directly. As a generalization of the observer
design approach in [17,18], an adaptive observer de-
sign is proposed for the first subsystem. By using the es-
timation of both states and parameters, we can approxi-
mate the fault by discretizing the second subsystem. Se-
lection of threshold with reliability is discussed.

This paper is organized as follows. Section 2 gives ge-
ometric conditions for the existence of a transformation
that transfonmns the original uncertain system into a desired
form. Then an adaptive observer design and parameter
adaptive law are given based on the transformed system,
In Section 3, actunator famlt detecton and isolation are
discussed. Release of SPR requirement is discussed in
Section 4. A numerical example is incladed in Section 5,
followed by some concluding remarks in Section 6.

2 Adaptive observer design
Consider the following nonlinear system with -

known parameters
d

5 = ) + golxdu + O 0gilz,) + O g(x)fy,

izl r=1
(1)
y = h{z) = [h(x), o, h(x), hypa(a) s (1) ],
(2)
where the state is 2 € R, the input is « € R™. and the
output is y € R’ The fanltf, = [f,;,-.fur] € R¥is
modeled as an additional disturbance input with d < r <
rn, and the unknown parareter is & = (4,,°+,4,] €
R?. Forthenmore, f{+), go{ ) and ¢;(-, -)(i = 1,
p) are smooth vector fields, and 2(-) is a smooth vec-
tor function. The failure representation formulation given
in (1) and (2) does not address sensor faults. The de-
scription of 2 sensor fanlt requires an additional term in
the cutput equation. The construction and analysis of
sensor fanlt diagnosis architectures require further inves-
Remark 1 According to [7 ~ 9], there are two
kinds of fanlts. One is in additive form, the other is in
multiplicative form. The fanlt description in this paper
belongs to the former,

Definition The adaptive observer canonical form
( AOCF) of system (1) and (2) is described as

; [ Op.y Dix(u—!)] . 7 =
= z Y, H
O - 13t Ao
'
ﬁ‘l’i(.’)f:“)ei + Eﬁ(ﬂfap (3)
=1 j=1
I O¢,_
y = [ ixl X IJxl]z, (4)
D(n—i}xl CO
where
AD = diag[‘dl!"-!‘dr—l]! CU = diag[cls'"l Cr—l]!
o 1 - 0
4; = 0 0 ;,lsisr—l,
0 0 e 0
C,=[1 0 0l,1cigr-1,

4T 2 [%eem 00], 5 = 1, d.
ey

For the sake of completeness, we list out below the
standard Lie derivative notations of differential geometry
[19], which will be used in Assumption 1 asd Lemma 1.

1} The differential of a smooth function A:R* — R is
denoted by

| 3h . 2
dx; dx

2) The Lie derivative of a function A along a vector

field f is denoted by L& = dk + f and recursively as
Lih = LALy ) = d(LFh) - f.

3) The Lie bracket of two vector fields f, g : R* — R"

is denoted by

dh = [

. &,
[f.g] =5, 83,

The Lie bracket of f and g is also denoted by adg,
which leads to recursive Lie bracket notation
adfg = ad{ad} 'g).
4) The relative degree of 2;{ = 1,+*-,r) for the sys-
tem described by (1) and (2) are denoted by
p, = minfs | qujL}'lh,-(x) #0,j=1,.ml

Assumptionl p; = - = g = Epl-= n, and
i=l
the system is locally observable, i.e.
rank{db,(x), . d(L h):l g i< vl = n,
where p;{(i = 1,**+,r) is the relative degree of 4;(x ).
Lenmma 1 Under Assumption 1, there exists a global
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diffeomorphism z = N (x) with ¥{0) = Oand z € K",
transforming 1) and 2) into AOCF if and only i 1)
there exist r vector fields g;,-, g, satisfying

LI hy = 8,8,

for lcssgrlskgplgstgr,

with 6, , = Ofors 5 ¢, and §,,, = 1, such that
[odjg, . adig] = 0,

forlcsitcr0gsigp-tl0gsigsa-1L

i) the vector fields

ad}g,,lsssr,Osispi—l.
are complete .

iii) (g 0dfg.] = 0, for0< i< p.Osjs -
1,1gs<r.

iv) ¢ = Z‘;,ﬁﬁ(z)g,- forj = 1,-,d.

Proof According to [17], conditions i) and ii) are
necessary and sufficient for 1) and 2) (with § = 0 and
f. = 0) to be transformable via a global diffeomorphism
z = N(x) into

Ot Onegnen
]z + v(y,n),
Ay

=
On-nxi
[ I!xl O(r-!}:-cl]
= z,
On-yxt Co
where the change of coordinates is defined by

, 3
adjg, = (-1)' 751, 0gigp -l 1sssr.

Condition iii) guarantees that q; only depends on y and u
in the z-coordinates. Condition iv) is necessary and suf-
ficient to transform ¢; into $; whose last n — ! elements
2er0 in z-coordinates. Thus system (1) and (2) can be
transformed into (3) and (4) under the conditions i) ~
iv). This completes the proof.
Denote

2= [21:"'sz¢:|Ts 2 = [z¢+l-"'rzn]T¥

yl = [J’1:"'-3’:]Ts yz = [y:+1="'s3’r:|T-
then system (3) and (4) can be rewritten as

2= Yiy,u) + Wy, u)0 + M{2)A, (5)

yt = 4, (6)

22 = Ag2? + Yy, u) + ¢y, u)d, (7)

y? = Co2?, (8)
where

Ly L h
M(z) = : , (9)
LG] by - L,‘h;
Remark 2 As a result of the transformation, it is

clear that in {5) ~ (8), the actuator faults enter only
through the first subsystem whose states can be directly
measured, while the second subsystem is not affected by
any favlts. This enables us to design adaptive cbserver
for the second subsystem which will be used for fault di-
agnosis. The construction of fault diagnosis architecture
for faults whose distribution does not satisfy condition
iv) in Lemma 1 peeds further investigation.

Remark 3 The unknown parameter @ still exists in
transformed system described by (5) and (7). This im-
proves existing results of FDI for nonlinear systems in
[11] where a perfect decoupling of system umcertainty is
required .

Assumption 2 There exist B and ¢*(y,n) such
that ¢*Cy,u) = By*(y,u). Furthermore, Colsi -
(Ag — KCy)]™' B is strictly positve real.

Remark 4 The Strctly positve real requirement in
the above assumption is equivalent to the following:
For a given positive definite matrix @ > 0, there exists
P > 0, such that

(4o ~ KCo)TP + P(Ag - KCp) =~ @, (10)
PB = C]. (11)

Theorem 1 Under Assumption 2, there exists a sta-
ble adaptive observer for system (7) and (8), and the
adaptive observer is given by

é2=Aofl+?’2(y,u)+357)2(y,u)9+1((y2—€021},

(12}
v.'ithﬂ}epmmeterupdatelaw-
8=~ Gy, u)Coi?, (13)
where 8 = @ - 8,7 = * - £2, and G is a positive defi-
nite weighting matrix .

Proof From (7) and (12), the observer emor dy-
namics is
1 = (Ag - KC)F* + Bg¥(y,u)8. (14)
The Lyapunov function is chosen as
V= ()P4 67678, (15)
where P is the positive definite solution of (10) and
(11), and G is a positive definite weighting matrix.
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From (13) ~ (15), we can obtain
V= (A7QF + BAPBF(y,u) + C%] =

- ()T, (16)
which proves the stability of origin3® = 0,6 = O and the
boundedness of :°(t) and 8(t). From (14), £ is
bounded as well. According to Barbalat’ s Lemmal®’,
one can get

lim#*(¢) = 0. (17)

This completes the proof.

Remark § It is well known in adaptive control that
a persistently exciting signal can guarantee unbiased esti-
mation. Therefore, to obtain an accurate estimation of
unkmwnpatameterﬂ,i.e.l‘_i_nj@ = #, a persisiently ex-
citing signal may be required in practice.

Remark 6 Theorem 1 generalized the existing result
of adaptive observer design in [ 18] where the single
output systern without actuator fault was considered .

3 Fault detection and isolation

For our result, we peed to make the following as-
sumption:

Assumption 3 rank M(z) = d, where M(z) is
defined in (9).

Remark 7 Assumption 3 is an extension of the as-
sumption rank CE = rank E which is necessary for FDI
of linear systems.

Discretizing subsystern (5) and (6) yields

™(z(k)) (k) =

P+ =y (B) =Ty (k) u(k)) +

$(r (k) ,u(k))8(k)], (18)
where k represents the %-th time step and T is the sam-
pling period . Assuming that no fault occurs during the
initial transient of the cbserver, using the estimation
#2(%),8 for 7(k) and 9(k) to approximate the actua-
tor fault as

FACIE

UH el (LD ER A

P (), u(k) - ¢ (R, (AR,
(19)

where M (k) = M(y'(k),2%(k)).
Let
N(EY = (M™)IMT(y' (k). 2(k)),
N(k) = (M™M)TMT(y'(k),22(k)),

one can have
fulk) - (k) =
(N(Ek) - N(R)) -
(e D=r B iy, uin] +
(N(E) - N(R) @ (k) ,u(k))8(E) +
NN (y(R), u(k))(8(k) - 8(k)). (20
Note that faults are not involved in the process of esti-
mating 2%, 9. Hence § — N if 22(%) — 2(k). ¥ the
tmknown parameter (k) is bounded, then for given e
> 0, there exists X such that for k > K

1 1
IOV - R ‘;,' r (k)
PR, ulk)) + g (B, s <e.

(21)
On the other hand, from the proof of Theorem 1, & is
bounded. So there exists L > 0, such that

I AR (y(k), u(B))BR) | < LV A(NTH).
(22)
Therefore

I -2l < LV Am(A™R) +e.  (23)
Threshold value is defined as

T(k) = Lo/Apel ) + €. (24)
When || 2,(k) || > T.(k), then the alamm for faults is
on, otherwise, the alarm is off.
Remark 8 Since the thresheld is greater than the
error of the fault estimation, the FDI process is reliable.
Remark 9 FDI by means of adaptive nonlinear ob-
server was also studied in [21,22]. The advantage of
our method is that it can detect not only the occurance
but also the amplitude of fanlts. Leaming-based fault di-
agnosis for nonlinear systems was devloped in [14].
However, the strict assumption that all the state variables
are available for measurement is required .
4 Discussion on release of the SPR re-
quirement
In Section 2, the stable adaptive chserver design is
under the assumption 2 that the plant transfer function is
strictly positive real (SPR), which does not always hold
in practice. In this section, we discuss the possibility of
removing the SPR requirement. For the sake of simplici-
ty, we assume that the subsystem described by (7) and
(8) is single output, that is, r = [ + 1, the obtained re-
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sults can be extended to the case of multiple outputs.
Define e{¢) = y*(£) - #%(¢), using the same ob-
server in (12), we can obitain the following input-output
¢éxpression of ermor equation
e{t) = H(s)$*(y,u)8(1), (25)
where H(s) = Cplsf - (45— KCp)]~'B. Using the
augroented error technique in [20], it can be shown that
ce(s) =87(2)&(s) + H(s)¢*(y,u)8(1) -
B()H(s)¢ (y,u) + 3(s), (26)
where £ = H(s)¢*(y,u),8(¢) decays exponentially
and can be neglected. We can define
er{t) =e(e) - [H{s)p (y,u)B(s) -
BL)H(s)$ (y,u)] (21
as the augmentsd error signal. Therefore, it can be ob-
tained that
ei(t) = 87(0)&(e). (28)
Equation {28) is in the standard form of the eror e-
quations widely used in adaptive control theory ™ . The
adaptive updating laws used in adaptive control can be
directly applied to tune #{¢). This can be summarized
in the following theorem.
Theorem 2 With error model {28) and the fact that
H(s) is stable, the parameter update law
e {2)€(2)
1+ E(2)&(2)
realizes a bounded §(¢) and 8 (¢) € L?, furthermore,
equation {17) holds.
Proof The proof of this theorem is omitted since the
same formulations presented in [20] can be applied.
5 An illustrative example
Consider the following nonlinear system with known
parameters

-

(29)

k-

i1 = X3 — zlﬂ,
42 = x%3 + (% + 2™l fy,
%3 = z|—u+(l+e’2)f,,+z33, (30)

¥1 = Xi»

“¥2 = X3,
By simple calculation, one can conclude that all the as-
sumptions in Theorem 1 hold. In fact, the relative de-
greepy = 1,03 = 2.

The transformation z = N(x) is described as

£ = X1y
lzz = %3 - %1%3, (31)
Z3 = X3.
Undex this transformation, the nonlinear system (30) is
changed into the following AOCF
= n+ 12 - nb,
l =- j’% + YL, (32}
Y1 = 2.
{23 = y1-n+ yf + (1L+e2)f,, (33)
Y2 = #s.
Note that the subsystem {32) can be written as
% 0 1Ii[= ny: -n
[jz]= 0 0][z2]+[_y’f + 1 u+[ 0 ]6,
(34)
y =11 0][21]. (35)
22

It is evident that Assumption 2 holds. Therefore, the
stable adaptive ohserver for subsystem (34) and (35)
can be designed according to {12). Furthermore, the
actuator fault f,{k) can be detected and isolated if
| G| > T.(k) with T.(k) as defined by {24).

In the sirulation, the actuator faults cosidered are re-
spectively as follows

] for0 gt 1,
fule) = {o 4, forl<t<5, (36)
fult) = 1 4 sinl4nt), 0 < ¢t < 5. (3
'IhegamnmtnxKlsselectedtobe[? 12]7, the sam-

pling period is 0.01s, and the weighting matrix ¢ = 10.
Fig.1 shows the response of the observer when there is
an actuator fault described by (36) in the system. Fig.2
illustrates the estimation of the actvator fault. Fig.3 and
4 depict corresponding results of actuator fanlt described

by (37). It is shown that good fault estimation is
ach:eveddﬁs;utcﬂmelmknovmpammctam&)esystmn
vz 0.1
0|4
& IS Ko
e s ol
E ol § oo
£ 00s & 006
g E o
§ o g oo
-0 08 =002
0 2 4 6 0 2 4 &
Time/s Time/s

Fig.l State estimation under fault occurance
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actuator fault
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the estimation 4
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Fig. 2 Fault identification and the estimation
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Fig.3 State estimation under fault occurance
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the estimation
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Time/s
Fig. 4 Fault identification and the estimation
6 Conclusion

This fault diagnostic approach in this paper uses an
;dapﬁve observer to detect and identify actuator faults for
nonlinear systems with unknown pararneters. A numeri-
cal example is given to illustrate the proposed scheme.

FDI for more general nonlinear systems with applica-
tion to practical systems will be investigated in future.
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