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Abstract: A sliding fanlt-tolerant {SFT) algorithm is tuilt for fitting trajectories of a SISO process when same pulse-type
faults arise fom outpart components of the process. Based on the SFT algorithm, a series of practical progoam is given to online
detect pulse-type faults in process and to identify magnitudes of these faults. Simmlation results show that these new methods are

efficient.
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1 Introduction

In many fiekds such as process safety and dynamic
system surveillance, it is a valuable and widely applica-
ble task to detect whether there exist any fanlts occurred
at a munning process or not and to conclude the magni-
mdes of the fanlts. In onder to detect and diagnose faults
of a process or a systern, most of the typical approaches
include detecting filters, analysis of influence fanction,
residual analysis, parity equation, parity space, proba-
bility ratic, generalized likelihood ratio (LR), innova-
tion analysis of Kalman filter and some classical statisti-
cal diagnosis, etc. Paper (1~ 5] summarized the evolu-
tion of fault detection and diagnosis (FDD) from differ-
ent viewpoints.

Summing up recent reference on FDD, we may find
out that most of the approaches were based on the Jeast
squared (LS) estimators of process parameters, the LS
fitting of process wrajectories, the LR function, or an e-
quivalent transformation of process model, etc.

Generally, these approaches stated above posscss ex-
cellent properties when the process mn properly. So,
these detection algorithms can be efficiently used to on-
line detect the first favlt and to offline detect mmiti-
faults, when a dynamic process nm out of the way. But
some classical statistics {such as the LS estimators, the
Kalman filter and the LR test, etc) lack of the fanlt-tol-
erance against the bad influence from fanlts arose before
the monitoring time. In other words, these detection al-
gorithms have bad behavior and may make false deci-
sion!?~¢ in online monitoring the process that has histor-
ical fanlts.

In practice, when a dynamic process run for a long
time, it is possible that there may exist some distinct
faults occurred at different times in the mnning process.
In this case, it is important to discuss how to online
monitor the state of the dynamic process with historical
fanlts. In this paper, we build a series of practical algo-
rithms o detect pulse-type faults online and to estirnate
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magnitades of these faults, Our algorithms have strong
fault-tolerance to faults. Some simulations will show va-
lidity of the new algorithms given in this paper.
2 The SLS fittdng and the SFT fitting
Assume that the output {y(¢),t € T} of a continu-
ous variable dynamic system is a measurable stochastic
process and that the expectant trajectory §(t),t € T}
of the output is squared integrable and smooth piecewise
i all of the finitz intervals. Basing on the famous
Weierstrass approximation theorems and their generalized
results!®), we conclude that the function (1)t € [1,,
t,] ¢ T) can be approximated by the linear combination
of a series of reasonably selected base {x;(t) € L%(s,,
51.j = 1,2,3,-1. Namely,

Ea,x, t) = (1) (s >+ ®), (1)
whm‘e{aJER,;_IZE! -] are real constants.

Considering the compensating error principle, formula
(1) can be expressed as

y(r) = Eu:l_,:vcJ t) + e(t), (2)

wherepmenorie(z) t € T} is an aggregate of
stochastic noise and error from fitting model.

Let’s set a coefficient vector @ = (ay,"**,@,)". The
key problem is how to identify or estimate the coefficient
vector @ when we use model (2) to fit the output of a
monitored process. The classical statistics for estimating
g are the LS estimators, the recursive least-squared
(RLS) estimators and the sliding least-squared ( SLS)
estimators .

2.1 The SLS fitting

In engineering fiekds, many of the dynamic processes
must run for a long time generally and involve compli-
cated dynamic properties and produce a large number of
measurement data. In onder to cut down the truncated er-
ror and to avoid the problem of data saturation, the slid-
ing fitting must be applied.

Now, let’s use the following notations

x€e;) x, (1)
He.; = : N
’h(tj) x,(!,) .
2i(s) S(5) (1< i<j),
h; = : s Yiug = N
L %,(8) y(t)

(3)

and build a series of recursive SLS estimators for coeffi-
cients of the fitting model. In fact based on the measure-
ment data set D(;oyvivn = (¥(8i01) 7y (8 ], it
can be proved that the LS estimator of &

';Is(m—-—nn) = Jtstrirnd Hlisi=inn) Yat=ivn)s

(4)

where

Jiisteion) = (Hlivieism Hiisimian)) ™ 0oz 5.

With the system’ s nmnming up progressively, formula
(4) satisfies a recursive algorithm as follows:
&[5(i+l—-i+n) =

CLs(iwivn-1) — .f(.'n—-.m)-"i(y(‘i) - hE&Dlsﬁ——im-l) +
F(i+l——i+n) (Jf(!‘iﬂa) - h§+]&|_5(,-_.,+,,_1)),
(5)
where
s h.
F{i+1——i+n] - J(1+1 i+n)Pisn

1+ h§+n]{,'+|_.,+n)h;+n-
Using formula (4), we can educe that the SLS fit for
process trgjectories at time t is equal to

Fistini-iem(t) = Edj.lS(iH—-Hn)xj(‘)s (6)
r=1

when the process mns properly. Comespondingly, the
one-step predictor for the process output y (&, ,,1) is
?15(1+1—-:+n)(‘1+n+l) Let us note the predicting error as
yls(l+1——1+n)(t:+n+])
(7)
Theorem 1 If the mean and variance of process
fe{g;):i = 1,2,+] are equal to zero and o°
respectively, then variance of the predicting emor
{€1s(isnstlisieisny] i5 equal o
1ir'E]'-(gl.-i(iﬂwlli+l—--i+u,'.l) =
(1+ hf+n+1J(l‘+|“’i+ﬂ}hi+ﬂ+1)a'2' (8
Proof Combining the LS estimators @rs(;si-isn)
with (6) into formula (7) and do some reduction, we
can obtain formula (8). Some detailed procedures are
omitted here.
2.2 Foult-tolerat improvement of the SIS fitting
Generally, the recursive SLS estimators given in (5)
arc piecewise optimal unbizsed linear estimators of the
fitting coefficients when the process nms properly and
exports output without faults. So, the SLS fitting poss-
eses some excellent statistical properties. But, the SLS
fitting has the same weakness as the ordinary LS fitting .
Many results have shown that the practical fitting results

ElS(:.+n+lll+l—-:+u] = y(£:+n+l)
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rithms in the case there exist abrupt faults occurred at the
running process. In fact, if there exists a faunlt occurred
atti:mt,—o,whnsemagniuﬂeisa.(t,-u),namely

i y(t), b b
LOEE U be )

then the predicting error of the SLS predictor cam be ex-
pressed as follows
éls(:'-t-n-l-llii-l—l'l'-ﬁ—n} =

ELS(iensllisi=itn}+

0, .!,'o < i;or E.’n > Invivls
w(ti+n+[’ t‘o)’ t:'d-lS tioi tl'l+l" (ID)
'l(tio)- tio = Pnsielr

wherne
w(li+n+1a‘io) =
- hEﬂu—](HIHI—-H-::)H(;‘+l—>i+n})-]hi°-

Expression (10) shows that pulse-type faults occurred
at a nmning process may resuit in evidently magnifying
the predictor error, the numerical values of which are
not equal to any constants at different sliding interval.
On the other hand, we can view the @ 1(¢, (s ) in for-
mula (5) as a modification of @1s(;,,-1) by the SLS
filtering residual

Els{ui-im-n = 3’(3;') - hﬁils{e-nn-l}
and the predicting mglﬁ(i+u¢1li+l—bi+n}- So we may
conclude that a pulse-type fanlt occurmed at time ¢, , can
not only unconventionally magnify the predicting error
"-:Is{;nwlml—-in} » but also evidendy change the esti-
IMALOTS (5 1nsn) &0d even break down the algorithm
(5). :

In order to overcome all of the bad influence from ex-
ceptional change brought by a pulse-type favlt on the re-
cursively sliding estimators of the model coefficients, we
set a re-descending!®! ¢ -function as follows:

%, 1 x| < ey

casgnl(z), e <lxl< ¢,
$a(x) = ¢ -1z |

T g U a<lxl<es,

0, | 2 1= c3,

(11)
where ( ¢1, 3, ¢3) are constants, and use this kind of ¢ -
function to cut down the bad influence of informal pre-

dicting error on the sliding identification algosithms. By
¢ -function (11), we construct the following sliding
fault-tolerant (SFT) algorithwn:

&i(m-im) =

Eitiminn-1) = JCioimned) BiF (ilimivn-t) +

Y(i+ nli—-i+n-—l!) , (12)

F(i—bi-ﬁn-l)d(i-bii-n-l}#d( d(i—bi+n-l)

where

diimion-1) = ¥ 1+ Blodtimian-DBiens

Yijlimien-1) = y( ij) - h}&i(i-bi-vn-l}-

Theorem 2 If {e(¢),: € T} of model (2) is sta-

tionary and its distribution is symmetrical, whose mean
and variance are equal to zero and o2 respectively, the
estimators { @(;o1wivn)si = 1,2,3, | are unbiased in
the case that there are not any faults occurred before the
time #, (g > min{s,n - 1}), and that initial valve
&*("u'“*l""n) of the algorithm (12) is selected as

&ls(nn-ml—-uu) -

Proof Distinctly, @4(s —n+1-n ) 18 an unbiased esti-
matorofﬂ:eparametervector&. Using the property that
the integral of an odd function on symmetrical interval is
equal o Zero, we can also prove the statistic
@4(n -ns2+n+1) being unbiased. Similady, we can

prove that all of the estimators are unbiased by mathe-
matical induction.

Now, let us expatiate on the rationality of the new al-
gorithm (12). Using a term “innovation” in [7], we
regard the one-step predicting ermor £1s(i4niisien-1) 88
innovation brought by the measuring data at tme ¢;, .. It
is obviously reasonable for us to substitute #{x) = =
implied in (5) for the re-descending ¢ -function given in
{11), because of the following reasons:

1) When an innovation of new sampling data fall into
the anticipative bound, we think that these new sampling
data are reasonable and are supposed to make full use of
them;

2) When the innovations of new sampling data go be-
yond selected bound but do not overtop a lot, we st
use the reascnable influence and confine the bad mflu-
ence from these sampling data;

3) We must escalate the restriction on making use of
information from the distrustful sampling data;

4) When the innovations distinctly depart from the
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normal value and are exceptionally large, we mmust quite

Considering the explanations stated above, we find
out that the modified algorithm (12) can more reason-
ably use the innovation from sampling data y{¢;, ) to
update the identification of parameters than the recursive
SLS estimators (5), when there exists large discrepancy
between a sampling data y(¢,,.) and the predictor
#(4yn) = hfm&#(i—-—iml-l)-

Distinctly, the modified algorithm (12) improves the
reliability of estimators with losing a little optimality of
the old algorithm. In other words, it is a compromise
between statistical optunality and fanlt-tolerance ability .
3 The SFT detection for process fault

Generally, if there do not exist any faults before the
time ¢;, , and the process {e(¢},¢ € T} is white and sta-
tionary Gaussian noise, then the predicting emor
€18(isnsllisi—i+n) ODEYS the nommal distribution N(O,
d{is1~+i+n)6) as we have pointed ot before. Basing on
this property, we may use the following detecting statistic
Ybisner) = Boni1Bis(isimisn)

d{istrisn)

RI.S( Lis n+l) =

?

(13)
and the famous “3 o -criterion” to diagnose whether
there is a fanlt occuming at time ¢;, ., or not. But many
theoretical analysis and practical applications show that
Ris(t;, »+1) can not be used in the case there exist one
or more faults occurring before the time (¢, .., | ) becanse
the detection statistic (13) is based on the LS estimating
algorithms and is hypersensitive to outliers'®) in sampling
data. Namely, algorithm (13) can not be used in moni-
toring multiple faults of a dynamic process.

In order to protect a detection statistic against any bad
influence of historical faults, it is one reasonable means
to substitute the SFT estimators for the recursive SLS es-
timators in (13).

In Section 2.2, it has pointed out that the estimators
@4(is1+isn) Given by formula (12) have the ability to
overcome bad inflience coming from outliers and to
make sure the reliability of estimators. So we replace
';Ls{m——im) in expression (13) by &i(i+|—-:+n}- This
means is a practical technical approach without failure
for online monitoring dynamic process in the case there
are multiple faults having occurred before the sampling

moment detected.

According to all of the analysis stated above, we build
a series of detecting strategies which are based on the re-
cursive SFT estirators:

1) Selecting ng > min|s,n ~ 1} and using the ro-
bust-LR detection algorithm given in [8], let us do
some offline detection to diagnose whether there are any
fanlts before the time ¢, or not.

2) All of the oatliers detected at step 1) must be cor-
rected with interpolation .

3) The Bis(n - ety caloulated with (4) is set as
the initial value of the recursive algorithm (12).

4) According to algorithm (12), a series of sliding
caleulation is done t0 ObLAIN @a(; 1 iy n)-

3) The detection statistic is built as follows

J‘(‘;+n+1) - hf+n+1&§(i+1——i+n)

Re(tiann) = d(islrisn) ’

(14)

6) A judgement is done:if | Rs(£;,n,1) | = ¢, there
is a fanlt occurred at time ¢, .1 Otherwise, the sam-
pling data is nomal and the process is nmning without
fault, where the constant ¢ is a bound selected properly
{The defanlt value is suggested as 3 o).

7) With the process rumming continnously, four steps
3) ~6) are done again and again.

4 The SFT estimators of fault magnitudes

Setting Y, n,1@4(is1isn) 2 & predicting value of
¥(tiyne1)+ a statistic is constructed as follows

L4(tina1) = 8Gamettivtmion) =
¥ (tiens) = Bienst@siimisml (15)
to estimate the magnitude of a fanlt.

Theorem 3 Assuming that the process {e(t),t €
T} is stationary and the distribution of €(¢) is N(O,
o).

1) If there exists a pulse-type fault occurred at time
t; v+l » then mathematical expectation of the statistic
Z4(tisnet) is equal to A (£, 001}, the magnitude of the
fault .

2) If the dynamic process muns properly, then the
mathematical expectation of A4 (¢;, 4.1 ) is Zero.

Proof The result of the theorem can be educed by
Theorem 2 and expression (15) cbviously.

5 Simulation
The drmulation mode] is selected as a polynomial
y(t) = a + bt + at® + (), e(e) ~ N(O,0).
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Setting the coefficients & = 100,46 = 10,¢c = -0.25and spectively, we obtain two different kinds of prediction
L ]

o2 = 1, we get 100 sampling data at time set

D=1{t,=to+ih | t=0,i=1,"-,100,k = 13}
by using the Monte Carlo method.

By intentionally shifting some sampiing data about
(- 1)"*1 1000 at the time set D, = {#,1i = 50 ~ 54,
751, we get a new series of output data with long patchy
outliers and an isolated outlier as in Fig.1.

2 500

-

=

2 —500

=

=

E

& —1500 " L i i N " M n L
1 11 21 31 41 51 61 71 81 91

serial number

Fig 1 Simulation with two kinds of outliers

Intuitively, the magnimdes of the isolated cutlier and
the patchy outliers are not prominent to all appearances
shown in Fig. 1.

5.1 The behavior of SFT estimators

Set the length of sliding interval n = 20. Fig.2 and
Fig. 3 show the recursive SLS estimators and the SFT es-
timators of three coefficients of the simulation model
given above respectively, using the simulation data
shown in Fig.1.
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5 2000 qm ﬂ
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E _0_6 L e

1 11 21 31 41 51 61 71 81 91
seral number
Fig. 2 The recursive SLS estimators of coefficients

Comparing Fig_2 with Fig.3, we are convinced that
the recursive SLS estimators of model coefficients are in-
fluenced badly by outliers and that the SFT algorithm
{12) have commendable resistance to outliers.

5.2 Detecting and identifying outliers
Using the estimators shown in Fig. 2 and Fig.3 re-

residuals and show these two series of prediction residu-
als in the Fig.4 and Fig.5, respectively.

3 600
=]
5 100 et P g et
E
E =400 ——— . . N .
1 11 21 31 41 51 61 71 8 9
serial number
-
- 30
E 1 N
E
2 -0 . . . N N A
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serial number
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g—ozs WP ot
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11 21 31 41 51 61 71 31 91
serial number
Fig. 3 The SFT estimators of coefficients
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= &0
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g &0 n —
—120 . . .
b1l 2t 3t 4 51 61 71 Bl 91
serial number
Fig. 4 Residuals of prediction using the recursive SLS
120
1 1
- 60 __ﬂ
8 (]
&
o — 60
-120 .2 —

I 11 21 31 41 51 61 71 &1 91
serial number

Fig. 5 Residuals of prediction using SFT

Fig. 4 shows that the bad influence of outliers on
residuals of the SLS predictors is descending step by
step. Evidently, if these prediction residuals were used
to detect the outlier online, then the sampling data
by(e) 1 i = 55,56,76,77} would be diagnosed falsely
as informal data although these data are normal. In this
example, the ratio of false detection is 40% and the ra-
tio of losing ontliers is 0.

Fig.5 shows that shapes and magnitixdes of the residu-
alsarevelyclésetoouﬂyingdatamsidcﬂ:etimcset
D,,. What is more, the prediction residuals rapidly de-
scend to zero or close to zero outside the time set D,
respectively. So, the residuals of the SFT algorithm can
exhibit the pattemns of faults excellently. In this exam-
ple, the ratio of false detection is 40% and the ratio of
losing outliers is § wo.
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Talble 1 The estimators of fault magnitudes

Serial Number iy 50 51 52 53 54 75
The SLS estimators 4 {1, ) 64.960 -93.207 7142 -81.617 75.259  61.238
The SFT estimators 4(; ) 101.326 - 99.744  102.063 -99.317 100.613  95.416

The estimating values of magnitudes for the six out-
liers are calculated and shown in Table 1, with the re-
cursive SLS algorithms and the SFT algorithms respec-
tively. Accorling to Table 1, we may educe that the
SFI‘estimanrsL(:,-Raremarkedlyclosertotlmevalues
that are designed for simulation than the recursive SLS
estimator A (¢, ) (ip = 50 ~ 54,75).
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