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Abstract: We discuss a uniform structure of simple recumrent neural networks, based on which a novel newral conirol sys-
tem is developed. With the introduction of the weighted control information into the neural controfler’ s cost functiou, the
method is an extension of the common neural networks controller proposed before. The stability of the whole neural control sys-
tem is demonsirated and its effectivencss is verified via sirmulation.
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1 Introduction

Neural network theory has gained great achievements
in the control literature these ten years. Owing to its
simple stmucture and dynamical mappling capability,
simplified recurrent peural network has attracted wore
and more attention, based upon which have researchers
thrown their enthusiasm onto developing kinds of control
paradigrast! 6} For instance, there is a nonlinear neural
controller with diagonal neurat metworks in [1], with
some detailed modifications in [2] and similar control
scherne proposed in [3]. In [4,5] there are studies on
ronlinear modeling and adaptive predictive control based
on Elman network, while in [6] a stable adaptive con-
troller was designed. However, all those proposed works
took no accoumt of their control signal variation in their
controllers” cost functions, and they have difficulties in
controlling the rigid pon-minimimm phase nonlinear sys-
tems.

In this paper a uniform struchire of simple recurment

neural networks { SRNN) is given. Based on it, a sim-
ple recurrent neural network control system { SRNNC)
which consists of neural netwerk identifier (NNI) and
neural network controller (NNC) is devised in the fol-
lowing. Not the same as the wsual NNC proposed be-
fore, a more general cost function for ncural network
controller is given, where a tem inchuding the weighted
control signals is introduced into controller’s cost func-
tion. Hence, the gained NNC is capable of controlling
the non-minimum phase noolinear systems. Given some
conditions the leaming rates satisfied, it is demonstrated
in the following sections that the whole control system’s
stability can be guaranteed.
2 Simple recurrent neural network structire

In[1~6], kinds of simplified recurrent neural net-
work: stuctures have been discussed, However, they all
can be unified into the uniform structure introduced in
the following (Fig.1).

We can get network descriptive equations for Fig. 1
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as follows:

O(k) = W°S(k)

[S(k} = R(WS (k) + WiX(Kk -1)), (2.1)

S(k) = S(k -1).

h(-} is sigmodal activation function. The context layer
S$(k) = S(k - 1) functions as the memory of the hid-
den layer state, and it also brings more abundant dynam-
ics into SRNN than that of mult-layer feedforward neu-
ral network.

Output layer (k)

Context layer 55(k) Input layer X(k-1)
Fig. 1 SRNN uniform structure

From Fig.1, if the input layer X( & - 1) has only one
node (% - 1), SRNN will be Elman-structure networks
in [4,6]. Furthbermore, if y(% - 1},-,y(k - n) are
miroduced into the input layer, it will be the extended
Flman networks in [5]. Given the previous control se-
quence imported to the input layer, the network structure
of [1,3] is a special case of our uniform SRNN. Vari-
ous of the network structures mentioned above have the
same character,i.e. , their origin is a multi-layer feedfor-
ward neural network (MFNN), and they all have the
context layer which saves the activation response of the
hidden layer. In this paper, these kinds of networks
have been unified into the uniform structure showed in
Fig. 1 named after simple recurrent neural networks.
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Fig. 2 SRNNC structure

Fig.2 is the structure of our proposed SRNNC. The
system control signal is generated from NNC, and NNI

models the nonlinear system to approximate its dynam-
ics. As a more general cost neural controler function
than that of [1,3], (2.3) takes account of the control
signal variation with a term as the weighted coatrol sig-
nats added into the cost function. In the case of system
oscillation or divergence, our neural control system de-
signed later will constrain the divergence and guaramtee
the whole system performance and its stability, so SRN-
NC will be more general applicable than those neural
network control schemes proposed before. In Fig.2,

Ik = Sy - 901, (2.2)

1K) = 2100 -y + 22, 2.3)
NNI and NNC both are the structure of SRNN (Fg.1),

and their input/output mappings are detailed as follows:
NNI:

$C) = 0,0) = 30 W) S, (k). (2.4)

1=

(k) = b{ 2 WE, (R SEC)+ 2 WL XIR)) &

t=el

{2.5)
NNC:

ulk) = 0,(k) = i}v;(k)?}(k), (2.6)

1=l

Tk = g( 2V, U0 T3+ 30 V(R XE(R))

(2.7)
such that the active function 2{-), g{+) are specialized

here as h(z) = g(x) =

l+e
3 Simple recwrrent neural network con-
troller design
With the uniform SRNN structure shown in Section 2,
our NNI and NNC, and their weight, ¥°, W* , ¥/ and
ve,ve, v, will be adapted as follows,

Wk +1) = W(k) + 55 _g—{%‘k-% . G

V{k+1) = V(&) + 5 _%%(7?-)2] {3.2)
Note e;(k) = y(k) - #(k), the tuming for NNI is
3o, (k)

(3.3)
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Lot n - dalsd| . NNC is
T dx x=l__.':_;,:W;f{k}sl-(k—l)+§’,-'I,-U‘}x,-!“‘), AV(E) =V(k+1) - V(k) =
o i‘—(’:)— [exy, — Au(k)]aoc(k). (3.8
A :=E‘F: (J:}T:(k—l}+i‘lf':}.(k}l':{k}. et IV(k)
=1 LT For NNC V°(k), V<(k)},V'(k), from (2.6),(2.7)
For all Wo(k),We(k), W/(k) in NNI (2.4), 20.06)
aof(k) aﬂd%mngda‘;(k).simlartothoseofm, as:
(2.5), IWE) are as follows: 20.()
20;(k) an(k) = Ti(k),
aw; (k) = Sitk), 3(; (kY 30.(k) aT(k)
& ¢ J ]
30,(k) 30,(k) 38(k) _ WECR) B X avi (&) T aT(R) avi (k) T Vi(k)g'Xi(k).
IWii(k) ~ as;(k) awl (k) e ' (3.9)
B4 o) 300k 3T(k)
AW (k) T as(k) awr (k) M D)
* - Vi(k)g' (Ti(k - 1) Vij(k) b=
Wi(k)YR (S;(k - 1) + EW‘;_JH%). e * ,Z.; ! Vi (k-1)
t=1 ij (3.10)
(3.5)

Generally, the modification of W(k) in every time
step is very smalil*!, 80 it is presumed
35k ~-1)  3§(k-1)
awi, (k) = aws;(k - 1)’
and (3.5) can be rewritten as:

30;(]:) _30;(k) 3Sj(k) _
aWs (k) ~ 3S;(k) awi (k) T
' i a8k - 1)
Wk R (S;(k - 1) + ‘ZQ Wi (k) AWk 1)
(3.6)

As to the adapting for NNC, while

gvct)zgv(t) vee(k) =y, (k)~y(k),

we obtain
3j. (k) de (k)
avie) = e (k) av(k)
29(k)
- e(k) avik)
If w(k) is the first element in the sequence X'(k) and

dulk)
avik) =

+ An(k)

+ Au(k) %%((’f)).

(3.7)

N
yu = 2, WKW, (k) then
i=1

a9 (k) 29(k) 2u(k) _
av(k) ~ 2u(k)ov(ik) ~

L , 30.(k)  20,(k)
;W}’(k)h Wi (k) IV = Y3V

Denote e,(k) as e,. The network weights tuning for

Since the dynamical backward propagation algorithm
(DBP) is used here to tuning the networks, the leaming
rates 7y, 7, will influence the system performance. If the
leamning rate is much bigger, it will deteriorate the whole
neural control system’s stability, and if wmuch smaller
the perfect system performance will not be obtained, It’
§ proved latrer in Theorem 1 end Theorem 2 that given
.7 satisfied (3.11), (3.12) respectively, NNI and
NNC will be convergent in exponential speed, so the
whole system is asymptotic stable. Define || » || in
Theorem 1,2 as the usual Buclidean nomm in B”.

Theorem 1 If W°(k),W*(k), W/(k) for NNI
(2.4),(2.5) are updated along (3.3),(3.4) and
(3.6), then NNI (2.4}, (2.5) will be convergent in
exponential speed, given that its leaming rate 7; holds
the condition as follows

0<ny< (3.11)

2
30 (k)|
aw(k)

Proof Define the Lyapunov function L{%) =
(k) =7 (y(k)=# (k))?, the proof is similar to that

1
2

of [1].

Theorem 2 If V°(k), V(k), V/(k) for NNC
(2.6),(2.7) are updated along (3.8} ~ (3.10)}, then
NNC (2.6),(2.7) will be convergent in exponential
speed, given that its leaming rate 7, bolds the condition
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as follows

0<p < (3.12)

2
aoc(k)l’ 2
vk | 7
Proof DeﬁneﬂrLyapmovﬁmcﬁon

L(R) = J(K) = ZE(R) + 5

2(k),
then

AL(E) =[e (k) + Ae,(-‘c)]ﬁec(k) +

Alulk) + Au(k)]&u(k) =

ALl(k) +AL2(I‘)1
such that e (k + 1) = e, (k) + Ae (k). From (3.8},

D (k) _if;,((?) AV(E) =
du(k)1”

_ [a-ﬂ—lu(k) 8V(k)] AV(R) =

- raelen - dulB) i3mS|
S0

2
ALi(K) = - yeqledu - (k)] %%((:))I *

Lyiples. - mth | 2%0

Similarly,

2
AL k) = Au(k)nfey, - Au(k)]li%((:))

0. (x|
EITO)

2712[8:7:. Au(")]z

AL(K) = - l‘;‘:,((:))l [ey, ~ Au(k)]?{n, -

A2 30,“:)'
2(r.+1)7ﬁ|av(“ .
As a result, to ensure NNC be convergent in exponen-
tial speed, it should be AL(k) < U, i.e.

nc{2— (72 + A)ml%%% 2] > 0.

So 7, must satisfy condition (3.12) to guarantee the
asymptotical stability of NNC.

Remark In linear system theory, the general mini-
mum-variance control {GMV; its cost function has the
form of Jawe = (7, (k) - ¥ (%)) + 2u*(%)) can se-
lect a sufficient big A to guarantee the closed-loop system
eigenfunction B + A4 = O stable if B is unstable, i.e.
non-minismum phase system, IfA = 0, GMV degrades

(3.13)

to the minimum-variance control {MVC, its cost fimc-
tion hes the form of Jyve = (7 (k) ~ y(k))?) and the
closed-loop system eigenfunction is B = 0, hence MVC
can’ t control the non-minimum phase system. Nonlinear
systerns haven’ t their amalytic closed-loop eigenfunc-
tions, and the effect of A in our neural system is not ana-
lytic either. Neural controller uses gradient-based learn-
ing algorithm to nme its weights, and this greedy opti-
mization algorithm drives the whole system to its cost
fimetion’ s Jocal minima. For [1,3], minimize the cost

function J! = —%(y,(k) — y(k))* to obtain its Jocal

minima, i.e.

aJ:

3y (k)
3u(k) =0 =- [?’r(k)

au(t) =

y($)1L

S B ) - (0] =

~ yul (%) - y(%)]. (3.14)
Generally, y, 0, so (3.14) changes to y,(k) — y(k)
= 0, that is to say, under J; in [1,3], the weight tuning
algorithms { gradient-tased) will drive the whole neural
system to its Jocal minima as y, (k) = y(k). while the
nonlinegr system is not-minimum phase, this kind of
neural controller can’t constrain its control signal’ s diver-
gence. Similarly, minimize the cost fumction of our NNC

= %(y,(k) -y () + %Ausz)
33-(1;:) =0~ - 7l 7, (B) - y(8)] + Aulk).
, - y(k
[I(k),\ (]

Here the local minima are z( %) =

In the case of non-minimum phase system. our neural
controllers can constrain the confrol signal’ s divergence
because of the influence from A. In simulation stodies
followed, our neural comtroller with a nonzero A suc-
ceeds in controlling those non-minirmmn phase examples
while the controller with A = 0 case fails.

(3.11) and (3.12) give an upper bound for 7; and 7,
10 guarantee the wholepeural system’ s stability, and if
select the optimal learning rate 7, , 7. as (3.15), the
rapid or optimal leaming convergence[l’ﬂwi]]beguar-
anteed .

" 1 M 1
o= 20,(k) 2r Ne = .30,_.(1‘) 2 ) .

Iawtk)” jav(k;iy (ra + )
(3.15)



http://www.cqvip.com

460 CONTROL THEORY AND APPLICATIONS

Vol.18

4 Simulation study
This non-minimun phase example is identified from a
laboratory-scale liquid level system. The system consists
of a d.c. water pump feeding a conical flask which in
tum feeds a square tank, giving the systemn second-order
dynamics. The controllable input is the voltage to the
pumyp motor and the plant cufput is the height of the wa-
ter in the conical flask. The identified plant model is as:
(k)= 0.97722y (k-1)+0.3578ulk-1) +
0.4589u(k-2)-0.31035(k - u(k-1)-
0.04228y*(k - 2) + 0.1663y(k - 2)ulk -
2) - 0.032599%(k - 1) y(k -2) -
0.35139%(k - Du(k -2) +
0.3084y(k — 1)y(k —2)u(k - 2) +
0.1087y(k — 2)ulk - Du(k -2) +
0.2573y(k - 2)e(k - 1) +
0.2939y2(k — 2)e(k - 1) +

0.4770y(k - 2)ul(k - 1)e(k - 1). (4.1)

T
—y (k)

200 300 400 500 600 700 BOO
iteration step
(a) The caseof 1=8.5

0 100

—05

0 10 20 30 40 S50 60 70 BO 90 100
iteration step
{(b) Thecase of 1=0
Fig. 3 System output of Example 1

Our simulation goal here is to make the height of the
water in the conical flask follow the set values y, (k)
which switch between 0.5 and — 0.5 every 200 itera-
tions in the presence of extemal mandom noise e{(k)
bounded in [ - 0.1,0.1]. To control this rigid liquid
level system with rich nonlinearity and exterior noise,
we select NNI and NMNC structure as 3 ~ 7 — 1. The

learning rate 7, , 4, both are initialized as 0.1, with inital
network weight values in [ - 0.5,0.5]. For the system
(4.1), select A = 8.5, after pre-training NNI in 1500
epochs, start closed-loop control and NNC works ( see
Fig.3(a)). While select A = 0, i.e.using [1,3], Fg.
3(b) is the plant output in the first 100 iterations and the
whole neural control system diverges after 500 iterations.
5§ Conclusions

In the paper some new works were investigated in the
following aspects:

The first is that a uniform simple recurrent neural net-
work stucture was given in this paper. The second is a
more general cost function was introduced into the neural
network control, and for the non-minimum phase non-
linear system SRNNC, which we devised in the paper,
showed its unique advantage over the usual neural net-
work control schemes. We can say that the usual neural
network control schemes such as [1,3] are the special
case of our SRNNC.
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