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Abstract: A neural network-hased adaptive tracking controb scheme is proposed for a class of noolinear systems. Two
RBF neural netwosks are wsed 1o approximate the unknown nonlinear system, and a sliding model control term is used to elimi-
nate the effects of the network inherent approximation errors and external disturbance. This control schemne can ensure the global

stability of closed Joop systemn and the asymptotical convergence of output tracking emor.
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1 Introduction

In recent years, the neural network-based control of
highly uncertain nonlinear system has been intensively
studied. The major potential is that neural networks can
approximate arbitrary nonlinear functon through leam-
ing . For the adatpive control systems based on neural
nebworks, the network weights need to be updated using
the network’ s output error, and the adaptive contral law
is synthesized based on the output of networks. Hence,
the central research topics in the fields of neural control
include the convergence of the weight training algorithms
and the stability of the closed loop control systems.
However, it is difficult that the stability, error conver-
gence, and robustness are fully proved for these control
systems based on off-line trained neural network beause
of the highly nonlinear of the neural networks'!). The
recent developments using adaptive neural networks for
direct adaptive control, as in {2 ~ 5], have made a great
progress in view to solve the above problems. For exam-

ple, Chen!?), Mario™!, Man{*!, and Fabri et al ¥) have
proposed adaptive neural control schemes based on Lya-
punov synthesis approach so that the stability of closed
loop system and asympiotic emor convergence ¢an be
guaranteed. Jin et al [ proposedmadapﬁvelieural
tracking controller for nonlinear system, but the control
scheme didn’ t consider the effect of the network approx-
imation error that is inherent due to the use of a finite
mumber of units in neural networks, in reason of imple-
mentation constraint.

In this paper, we propose a new neural network-based
direct adaptive feedback control scheme for a class of
nonlinear systems. Two RBF neural networks are used to
model the dynamics of nonlinear systems. And then, a
sliding maode control term is used to eliminate the effect
of the inherent network approximation errors and extemal
disturbance such that the proposed control scheme can
ensure the asymptotic convergence of the output tracking
enor and the global stability of closed-loop system.
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2 Problem staterment
Considering nonlinear SISC affire systemn

¥ = flw) + glxdu + 4, (1)
where x & [R" is the state vectors, u is the control input,
y is the system output, f{x) and g(x) are unknown
nonlinear smooth functions on R°, 4 is the extemal
bounded disturbance, i.e. | d | dp, with dg known
positive constant. The following assumptions are re-
quired.
Al) g{(x) is bounded away from zero,i.e. | g{xz) |
= go > 0, with g, 2 known lower bound. The assump-
tion Al} implies that g(z) is strictly either positive or
negative for all x. From now on, without losing gener-
ality, we shall assume that g () is strictly positive.

A2) The desired output y4(¢) is a continuously dif-
ferentiable function, and its first n derivatives ¥, -,
" are uniformly bounded.

The control objective is to find a control u(:) that
will force the output y( ¢} to track asymptotically the de-
sired output y4{2).

Since g(x) in system (1) is bounded away from ze-
10, its inverse is well defined. Thus, when f(x), g(x)
are known and the external disturbance d does not exist,
there exists the feedback linearization control law 2{¢)

- lﬂ%ﬂﬁmm&mlmdmput-outputdy-

namics of system (1) is ¥ = »(:)}, where »() is an

2(2) = ¥ ~ "~ —age,  (2)

where e = y — yyis the ontput tracking emor. Then, the

error dynamics of system (1)} can be obtained as follows

e 4 oa,_ et 4y gge = 0. (3)

Ka, ,",a are chosen such that the polynomial

(s} = " + a5+ + 0y

is Hurwitz, the error equation (3) is asymptotically sta-

ble. Hence, the output tracking emor e of system (1)

asymptotically converges to zero.
Define the error vector S = (e, €', -, el» D)7,
Then, the emror equation (3) can be rewritten as
§ =48, (4)
where
0 1 0 0
: 0 1
A= 9 0

is a Hurwitz matrix. Hence, there is a positive matrix
Py satifying the following Lyapimov equation
Pod + APy = - L (5
Now we consider the case that the nonlinear continue
functions f{x) and g(x) are completely vmknown and
there exists an external disturbance 4. Since it is proven
that neural networks can approximate a wide range of
nonlinear functions to any desired degree of acccuracy,
we can get the estimation f{x) and g(x) of unknown
nonlinear function f( -} and g{ -} using neural networks.
And then, in a relatively straightforward manner, we
will get the following mdified conirol law

-Z§x1+v!t:_l (ﬁ)
£(x) ‘

Substituting {6} into system (1), we obtain the error
dynamics as

7 = () +(F(2)-F (2 + (g 2) -8 (x Nuale) +4d.

(7)

Due 1o the use of a finite oumber of units in neural
networks, in reason of implementation constraint, the
network approximation errer is inevitable. That means

flz) ~ fx) 20, g(x) - g(z) 0.
Thus, the stability of error equation (7) can not be
guaranteed .

To eliminate the effects of the network approximaticn
emcr and the external disturbance d, we will redesign
controller {(6) by angmenting a compensation term
such that the control input u (2} becomes

u(t) = walt) + uyls). (8)
3 Adaptive neural controller
3.1 Neural approximation

Now, we will employ two RBF networks 1o approxi-
mate the umknown nonlinear functions f{ +) and g(- ),
respectively, and get the estimations 7(z ) and 2(x) as

Hx) = 07#(x), g(x) = Bo(x), (9)
where 4, and &, are estimations of the network weight
vectors &) and ,, respectively. Later we will give the
adaptive updating algorithms of network weights o pro-
vide the suitable performance of the nets. The vectors
$(x) and @(x) are Guassian type of functions whose
ith element, respectively, are defined as

Sﬁi(x) = CXP(— | % - <y I Z/Ufi)-
:(x) = exp(~ | x - ey 1 2763,

Uy =
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with ¢; and g;{(; = 1,2) representing the center and the
spread of the ith basis function, respectively. In actural
application, ¢;; and o; are predetermined by using the lo-
cal training techniquel” .

Further, the following assumptions are made:

A3) Given arbitrarily small positive constant w; and
wy, we could always find (nonunique) optimal weight
vector 8" and 67 , such that the network approximation
erTors ¢, £, satisfy

lepl=167"8(x) - f(x) | < wy,
leg 1=16;Tp(x) - g(x) | < w,.

A4) The optimal weights 4, and 6, are bounded.

Then, from expression (10), we have
Ax) = 6779 (2) + ¢,
g(z) = 8;To(x) + ¢,.

Remark 1 Assumption A3) reflects the approxima-
tion capability of neural networks. It is proven that the
network approximation error can become arbitrarily small
when the number of weights is large enoughm. ]

Remark 2 It is known from assumptions Al) and
A3) that gy can be chosen such that g* (x) = g,
where g (x) = 87 To(x).

3.2 The design of nemal controller

To eliminate the effects of the network approximation
error and extemal distrbance, we synthesize the robust
control term u, in controller (8) as follows

uy = — kysgnie;) (12)
with ¢, being the filtered error, £, = PS5, where P, is
the nth row vector of matrix Py. k,; is the control gain
given by the following expression
wy + 1 vy | w, + dy

go .
Substituting the control law (8) into (1), we get the
error dynamics of system (1) as
$=454+8, (14)
where B = (0,0,+,5)7, with
b=~ 0#(x) - Blo(x)uqy +
g(x)uy + &5 + ey + d. (15)
The weight updating algorithms are chosen as
B = vl?‘(x)els é= 7]2?(3)811&: {16)
with %, and 7, being positive adaptive rates.
Besides, because the control law (8) is not well-de-

{10)

{11)

kﬂ = (13)

fined when g(x) = 0. Therefore, to guarantee the
boumdedness of the control signal, we take the following
paramcter—resetﬁngmechanim[ﬂ.

When g(x) < g, letting
Ba(e*) = B2(e) + (go - £(2)) | (2) | 2g(x),

{17)
where ¢ denoles the time when 2{x)} < go, and ¢* de-
notes the time just after the resetting mechanism (17) is
activated .

It is easy to learn that the parameter-resetting mecha-
nism (17) can ensure §{x) = g after a weight reset.

In the following, we use the Lyapunov approach to
prove the stability of the closed loop system.

Theorem Considering system { 1) with assumption
Al) to A4) . If the controller is designed by expressions
{(6),(8),(12) and (13), and the weight vectors are
adjusted by adaptive mechanism {16} and (17}, then
the output tracking error of system (1) asympiotically
COMVErges (0 zero.

Proof Defining a candidate Lyapunov function as

V= %STPOS + -%u(éh;lél) + %u(agqiléz),

(18)
where §; = 6, - 8/ (i = 1,2) is the estimation errors,
andd, = 8,

Differentiating V with respect to time zlong the state
trajectories of the error equation (14), and using expres-
sion (5), we can get

V=- %STS - 81#(x)e; - 0o(x) e uy +
(g(x)uy + 67 + iy + d)ey +
e (@Tni'6,) + 8 75',).
Further, using the adaptive updating rules (16), the

above expression becomes

V=- %STS + (g(x)ug + ep+ egig + d)ey.

Using expressions (12) and (13), and considering As-
sumptions Al) and A3), and then, the following in-
equality holds
(g(x)u,:+ef+ Egud+d)8150.

Hence,wegetl:’s_-—%STSsO-

Now, considering the change of function V in the case
of 6, updated by the parameter-resetting mechanism
(17), from remark 2, it can be easily deduced that
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AV =
gf;[é(x)—gw Kao-g" () (go-(x)) | ola) | 2

. ﬁ(go - e(x)P ] oz} [ 2 <.

So far, it has been shown that V monotonically de-
creases. Then, it can be concluded that the close loop
system is globally stable and $,8,,8; are uniformly
bounded,

Furthermore, it can be easily obtained that v{(t),8,
and f, are uniformly bounded. Hence, using bounded-
ness of #(x) and ¢(x), we conclude that /{x) and
£(x) are bounded. Because the parameter-resetting
mechanism (17) can ensure that g(x) = g > 0, we
can get, from expression (8), the uniform boundedness
of 15, and then, the same for u,4in (12). Thus, & is u-
niformly boumded since all terms on the right of (15) are
botmded. Hence, {14) implies that § is uniformly
boumded, so that S is vniformly contimous.

‘ u ]
Let V(1) = V{¢) - L(V + %STS)dr. Since V
<- %sTs, then V, (1) = 0, so that V,(¢) is bounded

below. Further, ¥,(t) = - 55" imples that V(1) <
0, so it is semi-negative-definite. Finally, V;(¢) is uni-
formly continuous since § is uniformly continuous.
Hence, using Barbalat’ s lemma, we can deduce that
E—TVIU) = 0, so that S — 0 as t = e, This implies
that the tracking error e and its derivatives e (% = 1,
2,-+*,n) asymptotically converge to zero.

4 Simulation
Considering a second-order SISO nonlinear system:
1 = %2,
gy =2 + (a2~ D2y + u + d(2),
¥ = 5.

Assuming f{x) = - x; + (23 - 1) x,is unknown. 4(¢)
is external disturbance, d(t) = 0.2sint. A2x20x 1
RBF neural network is used to approximate the unknown
nonlinear function f{x). Take initial weight vector 8(0)
= 0, the spread ¢; = 0.25. The center ¢; is randomly
chosen in ( —0.2,0.2). Fig.1 shows the simulation re-
sult. It can be seen that the closed-loop system with this
control algorithm has excellent control performance,

o .\/-\/\/
cd T =
s

10 15 20 25 30 35

0 5
Fig. 1 Tracking trajectory of closed-loop system
5 Conclusion

We proposad in this paper an adaptive neural control
scheme for a class of nonlinear system. The weight up-
dating algorithm are derived based on Lyapunov method .
The sliding mode technique is used to synthesize a robus-
tifying term that can effectively eliminate the effect of the
network reconstruction emor and extemnal disturbance.
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bination operator and gene leap operator continually pro-
duce new schemata, while selection opemator, on one
hand, maintains the excellent schemata with high fit-
ness, but on the other hand, falls into disuse bad
schemata with low fitness. Similarly with TGA, through
genetic operator processing schemata, the individuals in
the population continually move towards the optimal in-
dividual in PGA, finally the optimal solution can be
pained.
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