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Abstract: This paper discusses the robust stabilization via state feedback for uncertain nonlinear systems. The uncertainty
is described by guin bounded perturbation function on the state variables. The main result shows that a feedback control law can
be obtained by constrocting 2 positive definite Lyapunov-like function, if the considered system is of robust minimum-phase and

its nominal system has relative degree one.
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1 Introduction

As the differential geometry was introduced to the
control theory, the essential structure of nonlinear sys-
tems was elucidated using the differential geometrical
tool. In the past decade, a lot of approaches based on
the system structure have been proposed to design non-
linear control systems in a general sense. For example,
it has been shown that a desired Lyapunov function for
mhmtsmhilitjrcanbewnsmlcwdbyrecmsiveway, if
the system has the triamgular structure. The case of para-
metric uncertainty was considered in [1}, and more
broader class of uncertainty, which is described by gain
bounded tmknown function on the state variables, has
been addressed by [2] and [3]. Robust stabilization and

robust L, design problem have been investigated in the
literature. A common characteristic of these approaches
is that the robustness of the system is guaranteed by a
fixed Lyapunov function of nominal system.

In this paper, we consider the robust stabilization
problem for nonlinear systems with gain bounded uncer-
tainty. The uncertaimty is described by a perturbed func-
tion in the state space model of the systems. We will
show that a feedback controller can be obtained by con-
structing a positive definite Lyapunov-like function,
which ensures the robust convergence of the system at
the equilibrium, if the considered system is of robust
minimum-phase and the nominal system bas relative de-
gree one. It should be poted that though this paper only
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discusses the case of relative degree one, the proposed
method can be also extended to the case where the rela-
tive degree is larger than one.
2 Problem present
Consider the nonlinear system with the uncertainty
{-‘f = flx)(1 + A(x)) + g(#)(1 + Ag(x))u,
y = h(x),

(1)
where x € B,z € B™,y € B™,f(x),g(x) and
A(x)(f(0) = 0,4(0) = 0) are known smooth map-
pings. Af(x) and A,(x) are unknown scalar functions
which describe the ummodeled error.

Assyme that the system satisfies the following as-
sumptions .
Al The gain of A/(x) is bounded, i.e. there is a
known function »{x) such that
| Ad(%) 1| n(x) 1, ¥x.

A2 A,(x) is uniformly bounded, i.e. there is a
sufficient small positive definite function m () such that
| Ag{x) 11 - m(x), V=

A3  The model of system (1) has the relative degree
r = 1. i.e.

Lh(z) 2 0,¥z € B".

Under the geometrical condition, & = spanig (x),
g2(x) ., gn{x)} is involutive distribution and the vec-
tor field {g1(x).g2{2), s gm{2)l = () LA(2)T
complete#! . It is possible to find a suitable function z =
T(x)}{z € BR™ ") such that system (1) is wansformed
into the following form,
{f = flz, )1 + Az, 7)),

¥ = alz.9)1 + Az, ¥)) + b(z, ¥ )1 + A, (z,5))u,

(2)

[J-ro-[) o

where

flz,5) = LT($""(z,9)),
E_f(zlf) = Ad#7'(z, 92 ],
A (z,y) = Al (2. 0],
a(z,y) = LA($"'(z,7)).
b(x,v) = LA($71(z,)),
PAPIEICR IR

A, 1 1 - d@lz,y),
It is clear that the zero dynamics of the system can be
described as
2 = fo(2)(1 + A{2,0)), fio(z) = f(2,0). (4)
Farthermore, we assume that the system is of robust
minimum-phase'?’ .

A4 There exists a positive definite function W{z)
such that its derivative along any trajectory of (4) satis-
fies W(z) gy < - eW(2), Y As, wheree > 0.

The purpose of this paper is to seek a smooth feedback
control 4 = a(x) such that the trajectory x(2;0, xq) of
the closed-Joop system (1) saﬁsﬁzs‘l_'_ln;x(no.zn) =0
for any A;(x),A,{») satisfying Conditions Al and A2
and any initial state xy € R,

For simplicity of terminology, we say the system to
be globally robust stable if system (1) has the above
performance .

The following lemmas will be used to prove our main
result,

Lemma 1!  Consider the nonlinear system £ =
f(x). If there exist a positive definite function V(x)

0<@(t) « @,y¢

andsv(:)saﬁsfyingh:?(s)ds < o such that the

inequality V(x) < - e¥(x) + ©(¢), ¥ ¢ holds when ¢
> 0, then for any initial value z(0), limz(t) = 0.
Lemma 2! There exists a smooth and positive real
function A,{z) > 0 such that the inequality
A
L) + 2 w1 .

1 ~
TR ) la(z,0) (1% <

- eW(z), Yz 0 (5)
holds if and only if the uncertain system (1) satisfies the
Assumption Ad.

3 Robust feedback controller design
3.1 Case of A(x)=0
Because the smooth vector function f(z,¥) can be
decomposed f(z,y) = foz) + fi(z,¥)y, system (2)
can be described as
{2 = folz) + filz, ¥)y, )
7 = a(z,9) + b{z,y)(1 + 8,)u.
Theorem 1 Assume that system (1) satisfies Con-
ditions A2 ~ A4. Then a desired feedback comtrol law
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ensuring the robust stability of closed-loop system glob-
atly is given by

wlz,y)= bz, yMeclz,y)-apulz,y)l, (7)
where

aylz,y) = alz,y) + [lﬂW(z)]T + -%sy,

amt iy (8)
#lz, 7)1 yTay 1+ ve @t
(¥ >0,8>0).
Proof Construct a positive definite function using
W(z) in Condition A4 as follows:

c(z,y) = -

Wz.y) = W(2) 539" (9)
Calculating the derivative of V along the closed-loop sys-
tem consisting of (6) and (7) yields
Viz,y) 1@, =

L W(z) - %eyTy +ylelz,y) +

Y Aelz,y) - y'Aan(z,y) <
—eV+yTelz,y) + yTZsc(z,y) +1 yTay .
(10)
1-1A87") 1
m($)
v (z,y), the following inequality can be obtained for
any A,(x).
Wiz, y) 9, <

Using (8) and Condition A2:

’

. lyTaH 2 7
—eVliz,y) -
eViz,y) IyTaMHTe_&HyaMIs_
—eViz,y) + e, Yi=0. (11)

Choosing ¢{¢) = ¥e ™™, then we have
V(z,y) Iy, < - eV(z,5) + @(2). Ye= 0.

Therefore, Theorem 1 is followed by Lemma 1.
3.2 Case of A;(x)=0,4,(x)=0

Theorem 2 Assume that system (1) satisfies Con-
ditions Al ~ A4, Then a desired feedback control law
ensuring the globally robust stability of closed-loop sys-
tem is given by

ul(z,y) = bz, y)teolz,y) - aolz, ¥t (12)
where

aoagy

Alz,y | yag |+ ve ¥’

A{z)

2z Cl(Z.Jf) +

co(z,y) =

aglz,y) = §7(z.y) +

1 1
eyl + e, (13)
ST(z,y) = (l,—lW)T+ alz,y).
C](Z,J') = ST(Z%W*‘ Sy)!
exz,y) = MT(2i(z,0) + My), (14)
and A(z) is a positive real function satisfying (5),
M(z,y) is the row vector function satisfying the de-
composition #{z,y) = A{z,0) + M(z,y)y.
Proof The closed-loop system consisting of (3) and
(12) is given by

[:] = Flz,y) + E(z,y)5f+ G(Z,y,zg)-

(15)
where
fo(z) -I-f](Z;)’)J’
Flz,y) = 2(z,5) _ao(z.r)]’
E(z,y) = fl2) + iz
a(z.y)
_ 0
G(Z’T’Ai) = [co(z’,y') —agao(z,y) "'aa‘cﬁ(z'y)] .

With Assurnption Al in mind, calculating the derivative
of V along (15) yields

V(z,y) las =

LeV(z,y) + LeV(z,y)Ar + LeV{z,y) <

LeViz,y) + M‘zd N LgV(z,y) 1%+

2—'11(-;—)Hﬁ(z,y) 124 LeV(z,y). (16)

Furthermore, it is easy to show that:
Lo )+ A2 | L) 1 gt e 12

1
24(z)

rTi(lf'W)ua-ao] +A(z)yT[(l,-1W)T+a]L4W+

LW+ A2 L w2y s a0 17

A (L Wy 4 Q2 W) + 6y 4

| N Y L rpr
YL MYa(z,0) + 220507 MMy, Yt

(17)
holds for ali z and y. Hence, by substituting (13) and
(14) into (17}, we have

L Wy) + 52 L w1

N ST 2 1 71
.03 |l a¢z,0)1%- ey =
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- eW{z,y) -

- eV(z,¥). {18}
Similar to the proof of Theorem 1, for any A,(x} and
Alx),

517—

Viz,y) lus) =
—eV(z,y) + yTeolz,y) +
Y Agolz,y) +1 ¥laglzy) I
-eV(z,y) + @1}, ¥t =0.
Therefore, the proof of Theorem 2 is completed.
4 Simulation example
Consider a nonlinear system {1), where
x = (2,307 € B,
x1%3 + X 1
0 527 - )
h(x) = X + %2,
b Adx) Vgl nlx) 1,

1 1
wlz) = 1+ 27

(19)

| ﬂg(.’f-) l$ 1- m{x)l

m{x) = p(l + sin®x,)(0 < p < 0.5).

Obviously, Li(x) = 1, i.e. the system has relative
degree one. Hence, the system can be transformed into
the normal form (3) bythefo]lomngooordmareu-ans
formation.

x Tix) 0 Xy
PR N
where
}-(z,y) = -3z 43y = folz) + filz,y)y,
alz,y) =2+ (2 430y -2), 8(z2,y) = 1,
Bleny) = a8 ]n Ayany) = 8,67 ] ]
i(2y) = 72,00 + Mspdy = 77 - g
M(-’r,y) = D
n(z[))_ l_h—z,m(z})—p(l+smz}

Smccthemmdynmcscfthcsystemmz = - 3z(1
+ Az, o)) choosing the posilive definite function

W(z) = ﬁz Zand A(z) = , We get
Lw(z) +5 | LfW(z) 1* + :ﬁ | alz.0) 1P
32, A 1 1 11 ,

P +57° 2 =" g%

Thus, theine(ma]ity
Lw(z) + 5 | LW(a) ¥ + 50 130200 P g
- 'IEIZI = - "‘512 = - EW(Z)

holds for sufficiently small e (e < 2.75).

Acconding to Theorem 2, the following feedback con-
trol faw is constructed for ensuring globally robust stabil-
ity.

ulz,y) = eolz,y) - aglz,¥),

where
T
- doanY
col2,7) = p(1 +sinfz) {1 yTao 1+ ye B}’
Alz)

aglz,y) = ST(z.y) + 5 ei{z.y) +—u—}z§cz(z,y).

ST(z,y) =4z +(z + 3)(}’ - z),
= ST(szoW‘F Sy),
LW =-32,

ez, y) = M"(2n + My) = 0,
and p,e, ¥, § are positive numbers.

From the simulation, it can be seen that when e , 5 are
larger and p , ¥ smaller, the control input is very large,
but the response time is short. The respomses of u and y
are shown in Fig.1 and Fig.2 respectively, when p =
OBe:l?—l(I),,B—ZOandlhemneﬂainty

A(x) = A,(n:) = p(i + sin’xy).

ez, y)

T

.....................

Fig. 1

0 05 1 1.5 2
/s
Fig. 2 Qutput curve of system

5 Conclusion
The robust stabilization of the minimum-phase nonlin-
car systems is discussed where the umcertainty is de-
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scribed by a perturbed fimction in the state space miodel.
The main resukt shows that a smooth state feedback can
be formed for ensuring globally robust stability if the
systern is of robust minimum-phase and the nominal sys-
tem has relative degree one. The design method pro-
posed in this paper can be extended to the case of the
nonlinear system with the relative degree r > | under

References

[1] Lin W. Global robust stabilization of minimum-phase nonlmesr sys-
tems with unceninty [J]. Aumatica 1997,33¢3):453 - 462

[2] Lin W and Shen T. Robust passivity and foedback design for mimi-
mum-phase nenlinear systems with stroctural incenainty [J]. Amo-

matica, 1999,35(1):35-48

[3] Shen T, L Xic and K Tamma. Robust almcst disturbance decoupling
for nonlinear systems with stroctural wncertainty [ A}, Proceedings of
376 [EEE CDC [C], Tampa, 1998,5:4107 - 4108

[4] ChenD. The Geometry Theoty of the Nonlincar Sysiem [M]. Be
jing: The Scientific Press, 1988

[5] QuZ2nd Dawsen D). Robust Tracking Conirol of Robot Mamipulator
[M]. MNew York: [EEE Press, 1995,33~39

[6] Isidori A. Noslincar Control Systems [M]. 3nd ed. Loodon:
Springer, 1995

R IAH B
MEEEL 1966 474 1901 SEF R K RHL M 5 5% 5 3k Rk w
THA WMLKFEAHLEMNRE ANERE LB RFHRRLF
. EEAERRE TS, MR, O EREHSEEWITTE.
WiLHE RAET 00 SEH B s6H.
MR REAI2000 481 MW,

Main Contents of the Next Issue

A Hybeid Control for Autonomous Systems of Electric Power Supply
Optimal Control for Hybeid Systems Based on Dynamical Programaming
Wmmmlm ...............................

.................. SUN Kai, ZHAO Qianchuan snd ZHENG Dazhong

........................ Ymm’ GAOcnmhmmjang
LI Zhong, ZHANG Bo and MAO Zongyusn

............................. I{Em. DMWMWANG Qi.ll

Adaptive Sslection of Crossover and Mutation Probability of Genetic Algorithm and Its Mechanism

............................................................................................................ mnmg amiwAm Nan
Analysis Metbod for Nash Strategy of Linsar Time VmantQuadmuchﬁerenuale via Wavelets {1)
A Reachability and Properties of Discount Asset Optimization under Transaction Costs -+ =<+ XU Stimeng and ZHANG Yughong

Stucture Analysis of Typical Fizzy Comtrollers with Nonlinear Rules end Unevenly Distributed Membership Functions for Input end Output

VAGGDIES  -=»*#7srresrrressasinmracasrassai e e e

...................................... FANMMMN&W

A Spiine Method for Computing a Class of Minimimn-Energy Control for Multivariable Linear Systems

........................................ ZHANG Xinjisn end L1J Shirong
ﬂj 'V\e[" 1- \’EC 10faumsofmmﬂsym..........-..-.......-..

GUO Jian, CHEN Qingwei, ZHU Ruijun and HU Weili

Exponential Bidirectional Associative Memory Model with Inraconnection «-===-srrrerereermsnrsrresmereess CHEN Songcan and LIU Zheng
Thlmnw[mmgﬂumoldemmgemeAnﬂymswaoduwhﬂumﬂmmlSym

- RUAN Xiao' e, WAN Baiwu and GAO Homgxia

Research of the Particle Size Neural Network Soft Sensor for Concentration Process

-------------- ZHANG Xiaodong, WANG Wei end WANG Xiaogang

Stwdy on the Stability of the Voliama Series Model Based Adaptive Control Systems ---v---r<->o DANG Yingnong and HAN Chongzhao
The Research of the Controllers for Machine Tool Lingar Motor Direct Feed Drives

An Investigation on the Partially Control of the Torsional Vibration of the Turbogenerator Shaft System -+~

- CHEN Zhilua, LI Shengyi, YANG Shunzhou and CUT Hongjuan

HAQ Zhiyong and FU Luhua


http://www.cqvip.com

