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Vector field based robot navigation
using hybrid genetic/simulated annealing algorithm
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Abstract: An analytical vector field model of robot workspace was presented. In the model, the vector of resultant field
described the most promising direction of robot motion. The model assumed that the edges of every obstacle, which was polygo-
nal, were uniformly charged. It was shown that the resulting repulsive force, which pushing the robot away from the obstacles,
could be calculated in closed form. Several factors including the length, the smoothness and the safety of the path require con-
sidering in robot navigation. Thus, a hybrid optimization algorithm, HGSA, which incorporated the simulated annealing algo-
rithm (SA) into the genetic algorithm (GA), was proposed to optimize the path through searching the model parameters. The
effectiveness of the proposed model was verified by computer simulation in three workspaces with different obstacle distribution.
Comparisons between the optimized results show that the hybrid algorithm obtains better path solutions than either GA or SA.
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.1 Introduction

Autonomous navigation is one of the most important
topics in the robot area and can be categorized into two
parts: reactive navigation[l' 2] and path planning, the
first one being local path planning based and the second
one plans a path in the global workspace.

Local path planning is an on-line obstacles avoidance
strateyy using the environmental information from its
perceptual systemn and does not need a prior model of the
environment. But the global path planning generates the
overall path with much prior information on the environ-
ment. A complete path is required to be planned from its
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initial location to the goal position while avoiding colli-
sions with obstacles. Commonly the first step in the
planning process is to map the workspace into the con-
figuration space (C-space). In configuration space, the
robot is represented as a point, and the location and ori-
entation of the obstacles are known.

In the global path planning area, the graph searching
and potential field methods are the most popular ap-
proaches used. The graph searching method!® *! firstly
sets up a graph showing free space and forbidden space
where there are obstacies. Based on this graph, a path is
then selected by piecing together the grids or cells in the
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free space. )

A variety of potential field methods’>~7' have been
presented in the past few years, positive (repulsive) po-
tential fields are placed around the obstacles, and nega-
tive (attractive) potential field is placed at the goal posi-
tion. The resulting field of these two ones acts on the
robot to determine the motion direction. In general, the
potential is a scalar function of the two distances, which
are from the boundary of the obstacles to the robot and
from the goal to the robot, respectively. The gradient of
such a scalar function can be used as a fictitious force to
navigate the robot.

In this paper, a new vector field model for robot navi-
gation is presented, which in fact is an improved poten-
tial field model. In the workspace with polygonal obsta-
cles, integral calculation of the repulsive field has been
derived in closed form, thus the resulting repulsive field
is constructed analytically, rather than numerically.

In order to take into consideration various require-
ments in robot navigation, a hybrid Genetic/Simulated
Annealing algorithm is proposed to search for the pre-
ferred model parameters.

2 Vector field model

In the vector field model, the robot is denoted by a
positive point charge, and negative charges are uniform-
ly distributed on the edges of obstacle, while a negative
point charge is placed at the goal position.

2.1 Attractive field of goal

The attractive field contributes to global navigation for
the robot. If the field strength is set to be proportional to
the distance between the robot and the goal, the motion
may lose the direction in the area far apart from the
goal. Also, if it is set to be inversely proportional to the
distance, when the obstacles that are near the goal have
strong field strength, the robot cannot approach the goal
for the stronger repulsive force. So it is set to be a con-
stant:

Q¢

|TG—T

EG(T)=’C1' I'(r(;—r); (1)

where r and r¢ are the current position of the robot and
the goal, respectively. Q¢ is charge quantity of the
goal, k, is a coefficient of the field sirength.
2.2 Repulsive field of obstacles

The repulsive field contributes to local navigation for
the robot. In traditional repulsive field model, the field

strength of the point charge trends to be the value of «
when the point approaches the charge. But the robot
may also collide with the obstacles if the motion speed is
too high. An improved field model is developed (as
shown in Fig. 1), the region where the field strength is
infinite is some distance (D;) shifted outwards. Thus
the safety of the robot trajectory becomes tunable
through changing D,. The repulsive field of a point
charge on the obstacle edge is defined as follows:
E(r) =
ks » Q,
(lr-r; |2—D%)%
0, (d(r) < Dy, d(r) > D,),

. (r—ri), (D, < d(r)s Dz),

(2)
where r; is the location of a point charge on an edge of
the obstacle, Qg is its charge quantity, k, is a coeffi-
cient, D, is the function range of the field, d(r) is the
least distance between the robot and the edges of this ob-
stacle, D, is a shift parameter, which is called the basic
safety distance.

Fig. 1 Improved repulsive field of point-charge

It is assumed in the model that the obstacles are
polygonal. An analytical solution of the field is ob-
tained, through performing integration on point charge
field along the obstacle edge. Considering an obstacle
edge uniformly charged (as shown in Fig.2), the line
AB is the j-th edge of the i-th obstacle, it is denoted by
y = k, + x + d. The solution of the repulsive field (in
the function range) is:

Eg(r) =

J’_kz e -0+l -] L i

B [(x -2)+(y, - y)?-D})2

EE"’]EATy

'dS:

(3)
Where /; is the line density of the charges on the obstacle
edge and it is assumed to be 1.
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EA—B(’) = E.','(f) = E.';x(f) +j- Ei,'y(f) =

b
sz' -\/1+k§-dx.

(4)
In this formula, the denominator is

ke+d-x -k -y)2
2y . e L4 e L4
(1+ k) {(x+ 1+ 12 +

[(ﬁ+yiuf—2n-d—09_(h-d-m—h-n)j}

Kx,-x)+j(y,~y)]-L
[(x—2)24(y,—y)2= D33

1+ K 1+ k2
Letitbe= (1 + k%) « [(x + B)? + ¢]. (5)
kz‘li"\/1+ki k2‘l,'
And define k = 2 = , then
(1+ k%) V1 + k2
Ez =

ABx
b x, b X
. 3 dx—-| — cdxp=
k {L [(x+h)2+c]% : L [(x+h)2+c]% x}
k b Jx(x + h)
L fEmGen)
[(x+h)+c]2 ¢
h'(x+h} l:}, (6)

c
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EATy=

b Y b y }
A ———de| —L—— . dxl
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k : l;,_{(yr—d) (x+h) 154
[(x+h)*+c]2 ¢
ké-h-(x+h) I:}-

c

(7

Assume there are N polygonal obstacles in the
workspace, and each obstacle has M; edges, so the re-
sulting field

k.+

E(r) = Ec(r) = ZZEij(r) =

Be(r) + 2 D Ep(r) +

i=1 j=1

N Mi
Cje[Eq(r) + 20 2 ER(D]. (8).

i=1 j=1
The angle between E(r) and axis X is defined to be a,
then

Eg,(r) + 2, Zi:Eq,(r)

i=1 j=1

E(;,(f) + ZZIE,F(T)

i=l j=1
The quadrant of a is determined by the signal of
E.(r). From formula (9), it is obvious that the com-

(9)

putation complexity of this algorithm is linear with re-
spect to the number of the obstacles edges within the en-
vironment,, O( NM), where M is the maximum edge
number of a polygonal obstacle.

v Ey (N —n Ey(r)
 Ein(r)
B
)
1
i
i !
0 a b X

Fig. 2 Obstacle edge uniformly charged
3 Robot navigation with vector field
model
3.1 Robot navigation method

Robot navigation is performed at a constant speed as
follows:

Step 1  Generate the model parameters such as Q¢,
ky,ky,D,, D, and motion step-size S,,. Set up the field
model for robot navigation;

Step 2
tial point S(x,,y,):% = %,% = ¥s3

Step 3 Calculate the direction angle a according to
formula (9), then the next position is

{xk+1 = % + Sw -
Yesl = Yk + Sw -

Step 4  Steer the robot to the next position (x;,,
Yr+1), Teset the present position: % = %k,15 ¥k = Yrel»
k=Fk+ 1;

Step 5 Judge if the robot reaches the goal position:
v (wr=-x6)? + (3x—yc)? < Tol (Tol is a tolerable posi-
tion error), if the condition is not satisfied and & is less
than a preset biggest iteration number, return to Step 3;

Step 6 The robot reaches the goal, or the step of
motion exceeds the preset biggest number, i.e., com-
plete path cannot be found using this poor model.

As expected, the robot stops moving after reaching
the goal position in the navigation. But if the parameters
of the model are set inappropriately, a complete path
cannot be found, sometimes even collisions will occur
(see Fig.3). To the collision free paths, some other re-
quirements must be taken into consideration in robot
navigation, including the length, smoothness and the
minimum & average distance from the obstacles of the
path.

k = 0, set the present position to be the ini-

cos a,
(10)

sin a.
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Fig. 3 Planned path with poor parameters
3.2 Collision detection for path

To detect whether there are collisions with obstacle on
the path, here consider a normal instance as shown in
Fig.4. In the figure, the line AB is an obstacle edge,
and the curves marked with small hollow diamonds are
two possible robot path. Points p; and p, are the nearest
points to points A and B on axis X, respectively. It can
be seen that the possible collision area is [ p;, ps,;] on
the path for this edge.

First of all, find these two points p, and p, on the
path. Assume that the line ABisy = a, - x + b, and
for every point k in this area k € [p;, p,], the line
from point kto point k + lisy = a3 * x + by. f a; =
aj, the two lines are parallel, no collision may occur;
else calculate the cross point of these two lines:
(2,y)=
((bz—bl)/(al—az),al . (bz—bl)/(al—a2)+b1).

Lastly, judge (x4 < = x < = xp& %, <= % < =
%4,.1) , if the condition is satisfied, there has a collision
between this path section and the edge AB, else no colli-
sion occurs.

For every obstacle edge in the workspace, repeat the
process. Once a collision is found, stop this procedure,
and there is no need of more detection for the rest
edges.

obstacle edge

collision

Fg. 4 Collision detection for robot path

4 Hybrid genetic/annealing algorithm for
robot navigation
4.1 Hybrid optimization strategy

Since the robot navigation is an optimization problem
(OP), some optimization techniques are used to search
for optimal model parameters and motion step-size, in-
cluding GA and SA.

GA®*) and SAI'®) are two useful stochastic tech-
niques, capable of solving the optimization problem ap-
proximately . GA is based on natural genetics and natural
selection, and it is naturally parallel. Generally, a GA
has three operators, starting from several to many points
by reproduction, crossover and mutation, better solu-
tions can be found rapidly with respect to the original
population. Simple as it is, it suffers from poor conver-
gence and usually has the inferior solution quality com-
pared to the SA. SA is an optimization technique, which
simulates the physical annealing process of a molten par-
ticle starting from a high temperature. It has the ability
to escape local minimum by incorporating the probabilis-
tic acceptance technique, but it usually takes much com-
putation time in order to arrive at a near-global minimum
and cannot easily exploit parallelism.

In this paper, a hybrid optimization algorithm (see
Procedure 1), combining both GA and SA, is present-
ed. The new algorithm, referred to as hybrid Genetic/
Simulated Annealing algorithm (HGSA), trying to com-
bine local and global searches, adopt the probabilistic
acceptance of SA in the schedule to improve the conver-
gence of the simple GA.

Procedure 1

The hybrid Genetic/Simulated Annealing Algorithm
(HGSA)

Step 1 Initialize the parameters such as the popula-
tion size, the crossover rate, the mutation rate and the
cooling rate () . Set initial temperature To. And gener-
ation number k£ = 0;

Step2 Determine the value interval for every param-
eter in the field model and how they are coded into seven
sub-strings, which are used to form the chromosome.
Randomly generate the initial population P(0) ;

Step3 k = k + 1, for each individual in P(k -
1), decode the chromosome to the parameters of the
field model, which then is used to navigate the robot.
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Calculate the value of the fitness function according to
the planned path (refer to Section 4.2) ;

Step 4 Implement selection, crossover and mutation
operation on P(k — 1) to create P’ (k), and update the
best solution found so far if possible;

Step 5 For each individual j in P’ (k),i = O,

Whilei < S

i
Generate a neighbor solution j/ from j randomly,
calculate the fitness value of j', replace j with j’

- - f)
with the probability min {l,exp [——f;—f;' },
k-1
update the best solution found so far if possible;
i=i+1
!
End for

S is a preset number for the SA loop. The population af-
ter this operation is the next generation P(k);

Step 6 Decrease temperature T, = T/_,7;

Step 7 If the stop criterion has not been satisfied,
return to Step 3;

Step 8 Record the best solution. Plot the path,
which is planned with the parameters decoded from this
solution.

4.2 Fitness value calculation

Considering the global aim is to plan a collision free
path of minimum length, maximum smoothness, and
maximum safety, four fitness sub-functions have been
defined :

+ Function of the length: f, =steps- Sw;

* Function of the smoothness: f, = rd _back;

* Function of the minimum distance to obstacles: f;
= 1/dgins

« Function of the average distance to obstacles: f; =
1/dge=1/ Dy;

Where steps is an index of motion steps for the path, it
is set as follows:

steps =
s _ steps (s _ steps <200 & collision free),
200+ 5 _steps (s _ steps <200 & collision occur),
500 (s _steps >200,i.e. ,no finished path),
(1)

where 200 is set for the 40 x 40 workspace, s_ steps is
the iterative number in the navigation. And rd _ turn, a

record of the coarseness on the path, is the number of
the points, where the turning angle exceeds 7 /6 in two
sequential steps in the path, or the two sequential turning
angles are not in the same direction ( clockwise or
counter clockwise). dg;, and d,,. are the minimum and
average distance between the path and obstacles, respec-
tively, d,. can be denoted by D,.

Linearly combine the four sub-functions into a com-
posite scalar fitness function as the following weighted
sum approach (w; can be set according to the workspace
and the preference of decision maker) :

fitness (k) =
witfitwrcforwscfitwgfy =
w3 Wy
duin* Dy’
(12)

So the optimization objective is to search for the least

value of the fitness function.

5 Computational results & discussion

A series of computer simulations are conducted to e-
valuate the ability of the vector field model and HGSA to
plan a path between two desired locations in three differ-
ent workspaces. The computation is implemented on a
Pentium computer and the program is coded in M file
using Matlab. .

The performances of the GA, SA and HGSA are test-
ed with the same parameters and stop criteria, which the
best solution found so far stays fixed at some consecutive
generations. For the three optimization algorithm, the
population size is set to be 50, p. to be 0.8, p, to be
0.02, and # to be 0.9. Each instance is randomly run
15 times for each algorithm.

Table 1 shows that the results obtained by HGSA are
better than those obtained by SA and GA applied alone.
The best solutions found so far of the HGSA have less
fitness value than that of the other two; moreover, the
CPU time of HGSA is much less than GA. It must be
stated that the CPU time of the SA is less than the other
two in our experiments. It will consume more time than
the other two, if all the three algorithms are implement-
ed seria]ly[“] .

It is difficult for simple GA to maintain a high diversi-
ty over time. As a result of the roulette wheel process,
some best solutions duplicate themselves increasingly in
the new generation, and low-fitness solutions gradually

rd_ back +

w ~ steps * Sw+w, -
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drop out. HGSA, by contrast, maintains a healthy di-
versity by using SA schedule, which accepts new solu-
tions at greater rate with higher temperature, and protects
good solutions from dropping out with lower tempera-
ture. It has been shown to overcome the poor conver-
gence property of GA significantly.

With GA doing global search, HGSA can obtain a
much larger portion of the solution space than SA. Thus
it can arrive at better solutions in less time.

Fig. 5 plots the paths derived in three different
workspaces from the start location (S) to goal position
(G) using the model, whose parameters are decoded
from the best solutions shown in Table 1. It can be seen
that the paths are safe, short and smooth.
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Fig. 5 Planned paths with the best model parameters
found so far of HGSA in three environments
with different obstacle distribution
(e denotes the nearest point to the obstacles)

Table 1 Comparison of results between

GA, SA and HGSA

GA SA HGSA
fr Eave f Lave f Eave
Env.1 291.9517 4.4501 290.0510 1.7942 287.3537 2.5092
Env.2 264.7976 4.7913 263.7880 1.9054 261.3471 3.1549
Env.3 265.5475 3.4564 263.5825 1.4285 262.6091 2.6845

f7 : the best fitness value of the algorithm found over 15 runs;
tae: the average CPU time to obtain the optimal solution (in

minute )
6 Conclusions

A novel vector field model is developed from an im-
proved potential field for robot navigation in 2D
workspace. An analytically rather than numerical solu-
tion of the repulsive field, has been obtained through
performing line integration of point-charge-field along
the obstacle edge. Besides collision, some other require-
ments must be taken into consideration in robot naviga-
tion, including the length, the smoothness and the safety
of the path. In view that robot navigation is an optimiza-
tion problem, a hybrid optimization technique, HGSA,
is used to optimize the navigation model. Path planning
tests in three workspaces using GA, SA, and the hybrid
algorithm are presented. Simulation results show that the
planned paths are very satisfying, using the proposed
model. And it can be seen that the presented hybrid al-
gorithm outperforms GA and SA.

For the prevalent drawback of local minimum in po-
tential field based navigation algorithm, certain heuristic
techniques are required to be appended in some unfavor-
able cases. The mending methods will be presented in
the future work .
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