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Stabilization of nonhomogeneous beam by embedding patch
of Kelvin-Voigt viscoelasticity
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Abstract: With the help of operator semigroup theory, the frequency domain method and the multiplier techniques were
applied. When the Kelvin-Voigt damping was distributed locally on any subinterval of the region, the energy of the nonhomoge-
neous Euler-Bernoulli beam was proved to decay uniformly exponentially.
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1 Introduction

Embedding viscoelastic patches in an elastic structure
is a stabilization technique in engineering. Consider a
clamped nonhomogeneous elastic beam of length L. One
segment of the beam is made of a viscoelastic material
with the Kelvin-Voigt constitutive relation. By employ-
ing the Kirchhoff hypothesis and neglecting the rotatory
effect, the transverse vibration of the beam can be de-
scribed as the following Euler-Bernoulli beam equation
with the Kelvin-Voigt damping and initial-boundary con-
ditions,
ew, + (pw’ + D))" = 0in (0,L) x R*,
w(0,t) = w(L,t) = w(0,t) = w(L,t) =0,
w(x,0) = wo(x), w,(%,0) = w(x), x € (0,L),

(1.1)

where the prime represents the derivative with respect to
the spacial variables x,w,L,p(x) > 0,p=FEI(x) >0are
the transversal displacement, length, density, and flexu-
ral rigidity modulus of the beam, and Dy, = O is the
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damping coefficient which is strictly positive on a proper
subinterval [a,8] of [0,L] but vanishes on
[0, L]\ [a,B]. The energy of solution to (1.1) at
time ¢ is
E(t) =
L 0p) 1w (20 12 4 00) 1 (e, 1) 12D,

(1.2)
The purpose of this paper is to prove that the energy of
the beam decays uniformly exponentially, i. e.,

E(t) s Me™E(0), t =0 (1.3)
for some ¢+ > 0, M = 1 and all initial values of finite en-
ergy. When p and p are constants on [0,a] U [8,L],
Liu K and Liu Z!V proved the energy decay property
(1.3) by the frequency domain method. We assume

Assumption A

i)0< p€ C'0,a]U C*e,p]U C'[B,L];
ii) D, =0on[0,a) U (B,L],0 < D, € Cla,B];
i) 0 < p € €*[0,a] U Cla,B]U C*[B,L].
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We will prove

Theorem 1 Under Assumption A on the coeffi-
cients, the energy E( ) satisfies the uniform exponential
decay property (1.3).

Recently, Liu K and Liu Z introduced two efficient
multipliers to establish the boundary exponential stabi-
lization of the nonhomogeneous beam equation with only
bending moment feedback in the preprint. In this paper
we will employ the similar multipliers and the frequency
domain method to prove our theorem.

2 Proof of Theorem 1
L
Let H = L2(0,L) with the nom || » | = (Lp
| v(x) 1%dx)? and V = H3(0,L) with the nomm
L
lolly = (_[Op | #(x) 12dx)2. Define # = V x H

1
with the norm || (w,2) | %= (lwll% + 1l o ]12)2.
Then # is a Hilbert space — the finite energy state
space. Define in # that

D(.4) =
{(w,v)lw,v € V, —-M=pu"+Dy"€ HX0,L)},
(2.1)
and
Aw,v) = (v,%M”). (2.2)

Then, the equation (1.1) can be written as the follow-
ing abstract evolution equation on %,
(w(e),9(2)) = Aw(t),v(t)),
(w(0),v(0)) = (wp,w;).
It is known that % generates a Cg -semigroup, ', of
contractions on # (see Liu K and Liu Z[!)) . Therefore,
(w(e),w(r)) = e®(wy,w,) gives the mild solution
of (1.1) for every (wy, w,) € #. Moreover, 4 ' is a
bounded operator on #. It is clear that the exponential
decay property (1.3) is equivalent to the exponential
stability of the Cy -semigroup e**.

Lemma 1l R(.%) c p(4), the resolvent set of
~%. Proof of Theorem 1 By the frequency domain
condition for the exponential stability of Cy -semigroups
on Hilbert spaces?’, we only need to prove that

sup {l (A-A) ' |2 € R(A)} <+, (2.4)
Suppose (2.4) is not true, by the continuity of the re-
solvent and the Resonance theorem, there exist A, €
R(4),(w,,v,) € D(o#),n = 1,2, such that

I (wnr0.) | =1, 14, 1>, (2.5)

(2.3)

and
(A, - A)(w,,v,) = (for8:) —>0in F.
(2.6)
Equation (2.6) implies
Aw, —v, = f,—>0in V, .7
Aanp - M} = pg,—0in [*(0,L), (2.8)
where M, = — (pw! + Dyw!”). From (2.6), we have

8
Re ((An =)t 0,), (10,02 ))s= | Dyl 12dx 0.

(2.9)
We substitute (2.7) into (2.8) to get
Aow, - M! = p(g, + A.f,) for x € (0,L).
(2.10)
Multiply the above equation by w,, then integrate by
parts on (0, L). This leads to
I Amwn 12 = || w, 13— 0. (2.11)
Here, we have used (2.5),(2.7),(2.8) and (2.9).
The rest of the proof depends on the following lem-
mas. Let§, = \/T,,l . -
Lemma 2(Liu K and Liu Z"))  The sequence {w,!
of functions has the following properties:

Agw, =0 in H*(a,B), (2.12)
640w, () 1241 wi(a) P+ 1w (B)1P+1wl(B)12)—0,

(2.13)
02wy (a™), 65'w;(B*) =0, (2.14)
0:'wy (™), 67'wl(B*) —0, (2.15)

On the intervals (0,a) and (3, L) , equation (2.10)
becomes

Aow, + (pw,")" = p(gs + Aufy). (2.16)
Lemma 3

w(a”)>0asn— o, (2.17)

w,"(B8*) >0as n—> o, (2.18)

Since || w, |3 + Il v, |2 = 1 and A, — v, also

converges to zero in L2(0, L), (2.11) implies that both

I Ao |2 and || w, |} must converge to % as
n — o _ This further leads to

a L
lim (J +f )o | Auw, 12dx =

o g

n— @

a L
Lim ('[0 +L)p | w? |2dx = % (2.19)
when (2.12) is taken into account.

In what follows, we will show that
a L
lim (IO | Aw, 1%dx + L | Aaw, 1%dx) = 0

n—®

(2.20)

I T Ty
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to get a contradiction with (2.19).

Multiply equation (2.16) by ¢w’, (where ¢ = e* —
1, 7 is a positive constant which will be determined later
on) and integrate on (0, a ), and then take the real part,
we obtain

ReJ A2 owpw' dx + ReJ ' Y'pw dx =

ReJop(gn+Anﬁ,)¢ul_'ndx. (2.21)

The right-hand side of (2.21) converges to zero. After
a straightforward calculation (integration by parts), we

ReJ A,,pw,,:/zw,:dx =
EL(p'tlz + 09" ) | Age, 1*dx + o(1), (2.22)
Re [2 (g ga =

-Re {J (pw!)' ¢ w,dx +J (pw!)'¢widx} + o(1),

(2.23)
ReJ (pwy) ¢ widx =
-J p¢' | wy 1*dx + o(1), (2.24)
Ref (pwn) gpwydx =
Re {Jopltﬁ | w? 1%2dx + :pw,'ﬂ/;uT,’,’dx} , (2.25)

ReJ:Wf¢uT:dx =

Re {(pp1ael )15 | Up'g+pg!) 1l 1+ pulp 7 e

(2.26)
From (2.17) and (2.26), we have

Reﬁplﬂ,’.”t/:uT,’,’dx =

- %J:(P'Sb +pg') | wy 1%dx + 0(1). (2.27)
From (2.25) and (2.27), we deduce

RCJ (Pw )tﬁw”dx =

2J (p'¢ - p¢') | wi 1’dx + o(1). (2.28)
Substituting (2.24), (2.28) into (2.23), we have
ReJ (pw!)'pw!dx =

JO(EP‘// - —;‘p'(/J) | we 12dx + o(1). (2.29)

(2.21),(2.22) and (2.29) imply that
%(p't/z +o¢') | A, 12dx +
J.Gw -

If 7 is taken big enough, we can make
—(p</1+pgb) > ¢, 2p¢
here ¢, is a positive constant. Thus ‘we have proved

lim (JO | Ao, 12dx +J0 | w,” 2dx) = 0.

n—>®

%p't/J) I w” 12dx = o(1). (2.30)

2P‘/’>Cl’

(2.31)
Multiply equation (2.16) by (e”“~*) — 1), and in-
tegrate on (3, L) , where 7 is a positive constant large
enough. Similarly, we can prove
L L
lim (L | Agw, 1%dx +L | w” 1°dx)) = 0.

n—>®

(2.32)
Thus (2.20) follows from (2.31) and (2.32).
So far, we have got the promised contradiction.
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