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Abstract: How an interval linear impulsive system could be robustly dissipative with respect to the quadratic supply rate
was illustrated. Moreover, the conditions under which a robustly dissipative interval linear impulsive system could be asymptoti-
cally stabilized by a state feedback control law. Finally, an example was given as the application.
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1 Introduction

For decades, a lot of attention has been paid to dissi-
pativity. In the literature of nonlinear control, dissipativ-
ity concept was initially introduced by Willems (1972)
in his seminal two-part papers.!?! in terms of an in-
equality involving the storage function and supply rate.
The extension of the work of Willems to the case of
affine nonlinear systems was carried out by Hill and
Moylan (1976, 1980)!**] and references therein. Bymes
and Isidori et.al started to research the dissipativity and
stabilization of nonlinear continuous systems in terms of
geometric nonlinear system theory in [5,6] and refer-
ences therein. Recently, although [7 ~ 11] have extend-
ed the notions of classical dissipativity theory by using
generalized storage functions and supplying rates for im-
pulsive systems and left-continuous systems, the results
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obtained by them do not include the robust dissipativity
and feedback stabilization of dissipative nonlinear impul-
sive systems. In this paper, by employing the methods
of Lyapunov and matrix inequality, we have investigated
the conditions under which an interval linear impulsive
systems is robustly dissipative with respect to the
quadratic supply rate. Moreover, by utilizing the stabili-
ty results for general impulsive systems!'?! instead of the
LaSalle invariance principle, we have investigated the
conditions under which a robust dissipative interval linear
impulsive system can be asymptotically stabilized by lin-
ear state feedback. At last, we present an example as the
application of the results obtained by us..

2 Preliminaries

An impulsive system has the form
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2(t) = fo(x()) + g(x())u ), %4,

Ax(e) = fa(x(2)) + ga(x(e))ug(e), ¢ = 4,

yo(t) = h(x(2)), Lo b,

ya(t) = ha(x(t)), t = b,
(1)

where x(t5) = x9,t = 0,2(t) € R*,Ax(¢;) =
*x(ef) - x(4),u ) € U Cc R™, uq € Uy c R™,
yeo(t) € R, y4 € R, f,:R*— R" is Lipschitz contin-
uous and satisfies £,(0) = 0,g.:R* = R"**™, f4:R"
— R* is continuous and satisfies f4(0) = 0, g4: R*—
R**™4, h.: R"— R’ and satisfies h.(0) = 0, hq:R*—
R« and satisfies hy(0) = 0. Here, we assume that
u.(+) and u4(+) are restricted to the class of admissible
inputs consisting of measurable functions (u.(z),
ug(t)) € U = (U,, Uy) for all t = 0, where the con-
straint set U is given with (0,0) € U .
In this paper, we consider the quadratic supply
rate (7., 74)!”, which is given by
Yolue,¥e) = yeReye + 2yeScuc + ulQ.uc, (2)
YaRayq + 273Squq + u3Qauqs (3)

Ya(ugs ya)
where symmetric matrices R, € R'*%, S, € R'*™, Q,
€ R™*m Ry € R, S, € RiX™, Q4 € R™*™,
with Q. = 0,,Q4 = 0.

Definition 1 An impulsive system of the form (1)
is said to be dissipative with respect to supply rate (7.,
Y4) if there exists a C"(r = 0) nonnegative function V :
R* — R withV(0) = 0, called storage function, such
that for all (u.,uy) € U the following dissipation in-
equality holds

V(x(1)) <

V(x() + | 7o), 7e(5))ds +

2 YaCua(tr), ya(ts)), (4)

KEN(s, 1)
where x(t)(t = ) is a solution to (1) with (u,, ug)

€ Ualldx(to) = Xp.

Remark 1 The special cases of dissipativity are the
passivity and nonexpansivity with respect to the follow-
ing supply rate (5) and (6), respectively (see [7]):

(Ye,70) = (2yluc, 2y3ua), (5)

()’c’yd) = ("%uzuc - nyc’rﬁug‘u’d - )’I}'d)’ (6)

where r, > 0,ry > O are constants.

The interval linear impulsive systems discussed in this
paper are described by
(2(t) = A.x(t) + AAx(t) + Bou(t), ¢t = 4,
Ax(t) = (A4 - L) x(1) + AAgx(e) +

\ Byuy(t), t =1,
yo(t) = Cex(t), L b,
Lya(t) = Cax(2), t =1,

(71

where x(29) = 0,4, € R™",B, € R™™,C, €
R'*", 4y € R™", By € R™™, C4 € R%*", and AA,
€ N[Q.,P.) = {84, = (Bay) € R™": ¢§ < Aa; <
pil,AAq € N[ Qq, P,] represent the interval matrices,
where Q. = (qj) € R**", P, = (p}) € R™".
Definition 2 Interval linear impulsive system (7)
is said to be robustly dissipative with respect to the sup-
ply rate (7., 74) given by (2) and (3) if for ény AA,
€ N[Q.,P.1,A44 € N[ Qgy, Pq], the system is dissi-
pative with respect to the supply rate ( 7., 74) -
Remark 2 Similarly, we can define the robust pas-
sivity and robust nonexpansivity for the interval linear
impulsive system with respect to the supply rate (5) and
(6), respectively. By [14], an interval matrix A4 €
N[Q,P) = {A = (a;) € R™":q; < a5 < pij»i,]
=1,2,-*,n} can be described as AA = Ay + ESF,

Whel'e AO = %(P"'Q),H = (hzj)nxn = %(P_ Q)’
s € > - 12 € anx"z:z - dlag ie”’..-’eml’ ]

e l< 1,i,j = 1,2,~,n},EE" = diag 12h1,-,

j=1
thj,--.,zh,.,-l , FTF = diag | Zhjl,Zhﬂ,'",
i=1 =1 j=1 j=1
PR

j=1

J' Hence, we can formulate the system (7) as the fol-
lowing interval linear impulsive system
(2(t) = (A +A)x()+E S F x(t)+B.u(t), t « t,
Ax(t) = (Ag-I,+Ag) x(2) + EqZ4Fax () +

Bauy(t), t = b,
yo(2) = Cex(t), s by,
Lyg(2) = Cqx(1), t = 4,

(8)

where AA, = Ay + ECECFC,AAd = AdO + EdZdFd’
and>. € 2*,34€ 3",
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Lemma 1011

constant A and any £ € R ,7 € R" the following in-
equality holds
2875 < 271678 + 9Ty (9

3 Robust dissipativity

Theorem 1 Assume that there exist matrices
X € R™*, L, € RP*", Ly € RP*™, W, € RP*™,
and Wy € RPa*™a, with X positive definite, and positive
constants A, A, such that the following equations hold.

(A, + A)™X + X(A, + Ao) + A\ XE.E.TX +

1

Let 3 € 37, then for any positive

A—FIFC -C'R.C.+ LTL, =0, (10)
1

XB, = CTS, + LYW, = 0, (11)
Q.- WiW, =0, (12)

(Aq + Ago)T(X + L XE4EJX)(Ag + Ago) -

(1= )X + A;'FIFq — CIR,Cq + LILy = 0, (13)
(Aq + Ag0)T(X + A XE4E{"X) B, -

CiSq+ LWy =0, (14)
Q4 - BI(X + M, XE4EJX)By - WIW, = 0, (15)

L EqN2 I Fall?+ Apu(X) I

Amm(X) ’
stands for Euclid norm, A, (X) and A,;,(X) are the
largest and smallest eigenvalues of matrix X, respective-

where ¢ =

ly. Then the interval linear impulsive system (8) is ro-
bustly dissipative with respect to the supply rate (7.,
¥4) given by (2) and (3).

Proof Let V(x) = x"Xx, then Vis C' and positive
definite function.

First, we shall show V(x) < 7.(u.,y.), for all
ty < t <<tk €N,

From (10) ~ (12) and by Lemma 1, for ¢, < ¢t <
tio1, k € N, we get

V(x) =

aT{(AT + AT X + X(A, + Al +
2x"XE, 3 F.x + 2x"XB_u, =

xT{(AT + ATOX + X(A, + A)lx +

X xTXE ETXx + AixTFIch +2x"XB,u, =
1

xT{(AT + ATOX + X(A, + Ay) +

MXEETX + - FJF\x + 22"XB u, =
1

*TVCTR.Cox—x"LTL x+2x7CTS, ucLZxTLI W.u,=

YeReye +2y0Scu, + u Qeu, — ulQ.u, -
ATLTL.x - 24"LTW u, =
Yelue, ye) = | Lex+ Weue | 2 7o(u,, 5.).(16)
Hence, by (16), V(x(t)) < 7.(u.(t),y.(t)) bolds
forall 4 < t < 3,1,k € N,
Next, we shall show AV(x(2;)) < Ya(uq(ty),
ya(t)), k € N.
By system (8), fort = 1, we get
AV(x) =
{(Ag+Ago) %+ Baua) TX1(Ag+Ago) %, + Baug! +
25 FISTETX {(Ag + Ag) 2, + Baugl +
X FISTEYXE S 4F any — %1 Xy, 7
where x;, = x(t;),uq = ua(ty).
Since X > 0, there exists a nonsingular matrix U such
that X = UTU. Hence,
x FISYEVXE 3 4F 3%, =
s FISTENUTUE S 4F 3%, =
| UEsSqFani 12 1 U2 | EqN 2 | Fall*eafn =
Aua(X) = T Eq 1%+ || Fqll? - 2z <

Amac(X) < 1 Eqll?- I Fll?

X Xxy = p - xiXx,

(18)
Ame(X) - 1 EqlI2- |l Fqll?
" Amin( X) )
Hence, by using Lemma 1 and through (13) ~ (15),
(17),(18), we get
AV(x) <
x1{(Aq + Ago)TX(Aq + Ago) - (1 - ) Xz +
2x7(Aq + Ago)"XBaug + 22 FISTETX {(Aq +
Ago) % + Baugl + ulBIXBaug <
20 {(Ag + Ago)"X(Ag + Ago) - (1 = )X} x +
2%1(Ag + Ago)TXBaug + A3 'xLF Faxy +
Az« {(Ag + Ago)mi + Bau | TXELETX 1 (Aq +
Ago)xx + Bauy} + ulBIXByug =
251 (Ag + Ag0)T(X + MXEQETX) (Ag + Ago) +
AFVFYFg - (1 = p) X o + 220 (Ag + Ago)T(X +
M XEGETX)Baug + ulBY(X + A, XE4EYX)Bgquq =
JCIR4Caxy — %xHLYLyx;, + 2xTCYSquq -

Ty T T TwT
2x,,Ldeud + udeud - ud Wd Wdud =

Whel'e[l =

Yaluasva) — | Loy + Wauall? < va(ug, ya),
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where x;, = (), uq = ug(t),yq = valt).

Hence, AV(x(t;) < 7q(ua(ti),yq(tr)) holds for
all k € N. Therefore, by Theorem 2.1 in [7], the in-
terval linear impulsive system given by (8) is robust dis-
sipative with respect to the supply rate ( 7., ¥4) given by
(2) and (3). The proof is complete.

Corollary 1  Assume that there exist matrices X €
R™", L, € RPX" Ly € RP", W, € RP>™, and W,
€ RPaX™a,
stants A, A, such that the following equations hold.

(Ao + A)™X + X(A, + Ay) + A\ XE EIX +

1

with X positive definite, and positive con-

A—FIFC +CC. + LIL, = 0, (19)
1

XB, + LTW, = 0, (20)
P2r-w'w, =0, (21)

(Aq+Ag0)T(X + A, XEJESX) (Ag+Aqgo) -
(1-p) X+ A3 'FYFq + CiCq + LiLg = 0,  (22)
(Ag+ Ago)™(X + A, XE4ESX)By + LYWy = 0,
(23)
13l - BY(X + 2, XEESX)By - WiW4 = 0, (24)
Il Eall2- ll Fall « Agu(X)
Amin( X). ’

Then the interval linear impulsive system (8) is ro-
bustly nonexpansive with respect to the supply rate ( 7.,
Y4) given by (6) .

Proof The result is a direct consequence of
Theorem 1 with Q, = r?/,S, = 0,R, =- I,Qq =
ril,S4 = 0,and Ry =~ I.

Remark 3 Theorem 1 can also be reduced to the
robust KYP Lemmal®! when the impulses are eliminat-
ed. The details are omitted here.

4 Stabilization by state feedback

Theorem 2 Let X be positive definite matrix satis-
fying (10) ~ (15). If there exist K, € R™>*", Ky €
R™*", and constants a., ag With aq > — 1 such that

Condition 1
K'(S.C. - WI'L,) + (CTS. - LTWK, +
CRC.-LiL.-a.- X<0, (25)
K}(Qq- WYW)Ky + (CYSy - LYWDKy +
K3(S4Cq — WALy + CIR4Cy = LYLy - ag* X < 0.

(26)

Condition 2 Denote y; & a (%, - %) +1n (1 +

where p =

ay), then g < O, forall k € N.
Then the state feedback control law
(ue,uy) = (K.x,Kyqx) (27)
can stabilize the equilibrium x = O of dissipative interval
linear impulsive system (8) , and asymptotically stabilize
the equilibrium x = Oifi/.zk =—- .

k=1

Proof By Theorem 1, the interval linear impulsive
system (8) is robustly dissipative with respect to the
quadratic supply rate ( 7., 74). Let V(x) = x"Xx, then
Vis C! and positive definite. We consider the closed-
loop system to consist of (8) and (27).

First, we shall show V(%) < a.* V(%), forall z;, <
t < tosk €N

From (10) ~ (12) and by Condition 1 for ; < ¢ <
.1,k € N, we get
V(x) =
aTHAT + AT X + X(A, + Al +
22"XE S Fox +2x"XB.K x < :
ATHAT + ATOX + X(A, + Atz + A x"XEE Xx +

}‘l—xTFIch +2x"XB K.x =
1

(AT + AT) X+ X(A. + Aw) +A XE ETX +
1
A
x"{CIR.C, - LTL. + K¥(S,C, -~ WIL,) +
(CTS, - LTW)K.}x < .+ " Xx. (28)
Hence, by (28), V(x(t)) < a.+ V(x) holds for all
<t sk €N
Next, we shall show V(xf) < (1 + aq) * V(x),
where xf = x; + Ax, k& € N,
Using Condition 1 and (13) ~ (15), we get
V(xt) =
{(Ag + Ago) 2k + BaKami} "X {(Ag + Ago) 2 +
BaKaxi} + 22 FSSTENX 1 (Ag + Ago) mi +
ByKax,} + 2 iF SGEGXE S 4F g <
201 (Ag + Ago) "X (A + Ago) +

Ama(X) T Eq N2« [ Fqll?
Ain( X)

253 (Ag + Ago)TXBaKax + 2xTFSSTETX [ (A, +
Aao) % + BaKamy} + xiKiBIXByKymi <
xpt(Ag + Ago) (Ag + Ago) + g+ X + AT FYFy +

F'F, + K'B'X + XB.K.}x =

‘X}xk+
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(Ag+ Ag)TXB4Ky + KIBIX(Ag+ Ag) +

Al (Ag+ Ago) + BaKgITXEGESX[ (A4 + Agp) +
BiKy) + KYBYXB,Ky} %, =

31 (Ag+ Ago)T(X + A XEGESX)(Ag + Ago) +
o X+ A FTFy + KSBYX + A XE4E™X)(Ag +
Ago) + (Ag+ Ago)"(X + A, XEJESX)B4Ky +
KSBY(X + A XE4ENX)ByKy} %, =

i CIR4Cy = LTLy + X + KX(Qq - WIWDK, +
(CISq - LYWy Ky + KJ(S4Cyq - Wil !z <

(1 + ayg) % Xx;, (29)

Egll2- || Fall2- X
where 4 = I Eq llmin‘(i/l‘l,) Amas( ).Hence, by

(29), V(xt) < (1 +aq) * V(x;) holds for all £ € N.
(28),(29) and Condition 2 imply that all the conditions
of Theorem 3.1 in [12] hold. Hence, the closed-loop
interval linear impulsive system given by (8) and (27)

is stable, and asymptotically stable if in addition E Hi

k=1

= — o . Therefore, the dissipative interval linear impul-
sive system (8) can be stabilized by the state feedback
control law (27).

Corollary 2 Let X be positive definite matrix satis-
fying (10) ~ (15). If there exist K, € R™*", K4 €
R™*" and constants a.,aq with a4 > — 1 such that

1)

KIBIX + XB.K, - CIC, - LIL, - a.* X <0,
(30)

Ki(ril - WiWa) Ky - LiWaKs - KWL, -

ClCy- LTL; - a4+ X <O. (31)

2) Denote u; A a.(tp,; — &) + In (1 + ay), then
p: <0, forall k € N.

Then the state feedback control law

(ue,uqg) = (Kex, Kyx) (32)
can stabilize the equilibrium x =0 of the nonexpansive in-
terval linear impulsive system (8) ,and asymptotically sta-
bilize the equilibrium x =0 if in addition > y; = — .

k=1

Proof The result is a direct consequence of
Theorem 1 and Corollary 1 with Q, = r2,S, = 0,
R.=-1,Q;=r51,5 =0,Ry =- 1, and XB, =
- LTw,. '

5 Example

As the application of the results obtained in Parts 3,4,
we give an example in this section. Here, the numerical
calculation procedure is coded and executed by using the
software MATLAB. We give the matrices of system (8)
as follows

-2 0 o 1
A,=| 0 -2 -1{, B, =|1],
-2 0 -1 2
1.000  0.1111  0.8522 )
C.=|-1.4387 0.1000 -0.2207 ],
~1.6971 -0.7264 0.1000
0.1 0 0.1 0 )
Ag=] 0 01 0, B;=1|11
0.1 -0.2 0.1 -1
1 -0.2155 -0.0812
C,=]0.038 0.1 -0.9713],

1.3851 0.8964 0.1
A =0,440=0,D,=0,D3=0,E;= F4 =0, and
E, F satisfying
E.ET = diag {0.1, 0.1,0.1},
FIF, = diag {0.1, 0.1, 0.03}.
The matrices in the quadratic supply rate (2) and (3) is
givenby Q. = 4,5, =0,R, =-13;0, =4,8; =0,
Ry = - I3. Then, by solving equations (10) ~ (15),we
derive one of the solutions as follows:
3.0000 1.0000 0.0000
X =]1.0000 1.0000 0.0000 {,
0.0000 0.0000 1.0000
2.0000 1.0000 1.0000
L, =10.0000 - 1.0000 0.0000 |,
0.0000 - 1.0000 0.0000
- 2.0000
W, =1 0.0000 i,
0.0000
L4 = diag {0.2000, 0.3000, 0.000},
W4 = (1.000, - 1.000,1.000)",
Ay = 2,and forany A, > 0.

Hence, the system obtained is robust dissipative with
respect to the quadratic supply rate by Corollary 1.
Moreover, we can design the state feedback controller
by employing Conditions 1 and 2 of Corollary 2. Let 4,

U

T
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=0.1,8; = t4, -t =0.1,a, = 1,24 = - 0.18127
be fixed, then we can get many (K., K,) satisfying
Corollary 2. For example, K, = (0.5 0 0.5),K, =
(0.2 0.1 0.1), where the state feedback controller
(ug,uq) = (K.x,Kyx) asymptotically stabilizes the
dissipative interval linear impulsive system.
6 Conclusions

By employing the methods of Lyapunov and matrix
inequality, we have investigated the conditions under
which an interval linear impulsive system is robustly dis-
sipative with respect to the quadratic supply rate. Dissi-
pativity theory is always linked with the feedback stabi-
lization theory. By utilizing the stability results for gen-
eral impulsive systems, we have derived the sufficient
conditions under which a robustly dissipative interval lin-
ear impulsive system can be asymptotically stabilized by
a feedback control law. As for the stabilization for dissi-
pative uncertain nonlinear impulsive systems, we will
discuss it in our future papers.
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