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Feedback stabilization of nonuniform Timoshenko beam
with dynamical boundary
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Abstract: The boundary feedback control problem for a nonuniform Timoshenko beam with a load at one end was stud-
ied. First, a boundary feedback control scheme was proposed, and the well-posedness of the corresponding closed loop system
was established. Then by using the multiplier method, it was proved that the closed loop system was exponentially stable if two
boundary feedback controls were applied simultaneously to the beam’s tip where the load was carried.
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1 Introduction
Consider the boundary feedback stabilization problem
of the system governed by a nonuniform Timoshenko
beam with dynamical boundary conditions. The system
to be investigated in this paper is described as follows
(see [1 ~51):
ew + (K(p - w')) =0, x € (0,1), t >0,
lp-(Elp'Y +K(p-w') =0, x € (0,1), t >0,
Mw(l,t)= K(D(p(l,2)-w (1,1))+u(t), t > 0,
Jo(l,8) = EI(D) @' (1,1) + uy(t),
‘w(0,t) = ¢(0,t) =0, t >0,
. (1.1)

where a nonuniform beam of length { moves in w — x

t >0,

plane, p is the mass per unit length, w(x,t) is the de-
flection of the beam from its equilibrium, and p(x,t) is
the total rotatory angle of the beam at x,/, and EI are
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the mass moment of inertia and rigidity coefficient of the
cross section, respectively, and K is the shear modulus
of elasticity. Here the boundary conditions at x = 0 in
(1.1) means that the beam is clamped at x = 0, and at
x = 1, the beam is of a load of mass M and rotatory in-
ertia J. Here and after the prime and the dot stand for
the derivatives with respect to space variable x and time
variable ¢ , respectively. u,(t) and u,(t) represent the
boundary feedback controls applied to the beam’s right
endx = [.
For the system (1.1), we apply the following linear
boundary feedback controls :
u(t) = —aw(l, ) +ar(p(l,t)-w' (1,1)), ¢t > 0,
{u3(t) == Bp(l,t) - Bro'(1,1), t>0
(1.2)
with nonnegative constants a;,a,, ;,3,. Moreover, in
this paper, we always assume that
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Assumption S p(x),1,(x),K(x),EI(x) > 0,
vx € [0,l],andp,1,,K,EIl € C'[0,1].

In recent years, the feedback stabilization problem on
the beam has attracted a great deal of attention and a lot
of results on various feedback stabilization problems of
flexible beam equations have been turmed out ( see
[1~7]). In paper [ 1], it is proved that with both force
and moment feedback controls applied to just one end of
a Timoshenko beam without end mass, the energy corre-
sponding to the closed loop system decays exponentially .
In paper [4], the feedback stabilization problem of a u-
niform Timoshenko beam system (1.1) with a tip mass
and dissipative boundary feedback (1.2) was considered
and under the condition that ay, a2, 8;, 82 > 0, some in-
teresting results for the stability of the closed loop system
are obtained. In [6], the uniform boundary stabilization
of a nonuniform Euler-Bemoulli beam is obtained by us-
ing the frequency domain multiplier method. In this pa-
per, we consider the stabilization of a nonuniforrn Timo-
shenko beam with dynamical boundary and some bound-
ary feedback controls. In a certain comparatively weak
condition, the asymptotic stability of the closed loop
system is derived, while in some comparatively strong
conditions, the exponential stability of the closed loop
system (1.1) and (1.2) are obtained based on some of
the results obtained in [4] and [6] and some of the
skills used there.

2 Well-posedness of closed loop system

Set

() =Mw(l,t)-aepl,t)-w(l,t)), t >0,

{q(t):.kb(l,t)+,32¢'(l,t), t >0,

(2.1)

then we have
{é(t)=K(l)(go(l,t)—w’(l,t))—a,:b(l,t), t >0,
7(¢)=-EI()¢' (},2)-pre(l,t), t >0.
(2.2)
Now the closed loop system (1.1) and (1.2) becomes
ow + (K(p-w')) =0, x€(0,0), >0,

Lo—(Elg'Y +K(@-w')=0, x € (0,1), >0,

E(t)=K()(pl,t)-w (1,t))-aw(l,t), t >0,

7(¢) =- EI(1)¢'(1,1) - Bip(l,2), t>0,

w(0,t) = ¢(0,t) =0, t > 0.

(2.3)
To incorporate the above closed loop system into a cer-

tain function space, we define a product Hilbert space %
by
F = Vo x L;(0,1) x Vo x L (0,1) x C2,
where V& = { o € H*(0,1) | ¢(0) = 0} for k = 1,2,
and H*(0, ) is the usual Sobolev space of order k. The
inner product in #is defined as follows:
(Y,,Y)) s =

! ,

JOK(% - wi )Py — w3 )dx +
! !

IOEIgo{gT:zdx + Iopzlz‘:zdx +

1 . _
Jol‘plsl’zdx + 71662 + a2,

where Yk = [wk)zkvgokysbkyEkyﬂk]Te Hfork =1,
2, and

e KD B
V2 K(DM + ajay’ "2 = EICDT + BiBy”

We define a linear operator .% in # by
Alw z ¢ ¢ & 9] =
¥4
- o (K(p - w'))
¢
LYEl') - KLY e -w) |
K(D(p(l) = w' (1)) - ayz(1)
L - EI(De' (1) - pio(l)
[w z ¢ ¢ & 3]"€ (4,
D(A) =
{{w,z,0,¢,6,9]"€ Flw, p € V},z,
¢ € Vo, 7= Jo(D) + B’ (1),
& = Mz(1) — az((l) — w' (1))},
Then we can write the closed loop system (2.3) as the

following linear evolution equation in # :

Y(t) = AY(s), (2.4)
where Y(¢) = [w(-,t),w(,2),0(,1),0(-,1),
g(e),p(e)] "

Theorem 1 Let % be defined as above, then .4
generates a C;, semigroup T(t) of contraction in % .
Moreover, .4 has compact resolvent and 0 € p(.4).

Proof ForanyY = [w,z,¢9,¢,8,9]"€ D(.4),
integrating by parts and referring to the boundary condi-
tions of Y € D{(.%4), we have

Re (AY,Y)% =

- K(Dyiax | @) = w' (D) P = ayy M | z(1) * -
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Y2B82EI(1) | @' (1) 12 = By7aJ | o(1) |12,
which implies the dissipativity of .4.

For the maximal dissipativity of .4 and for the fact
that0 € p(.4), it is sufficient to show that VY = [,
z,{o,&,é,?,]Te% there exists a unique ¥ = [w, z,
¢.¢,6,7]"€ D(A), suchthat £Y = Y, i.e.,
zZ =W, = ;D, and

-(K(g-w')) =pz, x € (0,1),

(El¢') - K(p - w') = I, x € (0,1),

K(D(p(l) = w' (1)) = ayw(l) + &,

- EI(D)¢' (1) = Bro() + 7,

w(0) = ¢(0) = 0.

(2.5)

But it can be easily shown by the general theory of ordi-
nary differential equations.

The compactness of the resolvent of .4 is easily de-
rived by using the Sobolev embedding theorem. With
Lummer-Phillips theorem, the proof is then complete.

Thus according to the semigroup theorym , we ob-
tain:

Theorem 2 For any Y, €& #, (2.4), and hence
the closed loop system (1.1) and (1.2), has a unique
weak solution Y(t) = T(t)Y,, where T(t) is the lin-
ear semigroup of contraction generated by .4. More-
over, if Yo € Z'(.A4), then Y(t) = T(1)Y,is a strong
solution to (2.4).

3 Asymptotic decay of closed loop system

We now discuss the asymptotic stability of the closed
loop system (2.4) under Assumption S and a; + a; >
0, 81 + 8, > 0. The energy corresponding to the solution
of the closed loop system (2.4) is

E(t) =

I
%[L(Ellgo' P+Klo-w 12+p12z1%+

Lig!Hdx+7, 1612+ 7 171%,
where Y(z) = [w(-,2),w(-,2),9(-,2),2(-,2),
&(t),7(¢)]" is the solution to (2.4). It is easy to
check that under Assumption S,
E(r) =
-K(D 710z | (D) =w' (1) 1P=ay7, M | 2(1) 1=
Y2B2E1(D) 1 @ (D12 = Bi72d 1 (D 1%, (3.1)
Let iR denote the imaginary axis.
Lemmal Assume thata; + a3 > 0,8, + 3, > 0

and that Condition S holds, then iR — o(.4), the re-
solvent set of 4.

Proof We prove only the case of a, = 3, = 0,
a; > 0,8, > 0, as for the other cases, the proof is sim-
ilar. Since .4 has compact resolvent, it is sufficient to
prove iR (N 6,(A) = @. If not, then there exists a
nonzero eigenvalue i A € iRof 4 . Let ¥ = [w, 2, ¢,
¢,&,7]"T € D(.4) be an eigenfunction of 4 corre-
sponding to i A. From Assumption S and the fact that

0=Re((A-id)¥,¥)y-=

a2 K(1) EI(D)B;
J

- e(D—w (1) 12 RAONL

(3.2)
we have ¢ (1) = w'(l)and ¢' (1) = 0. So
0=id-K()(p(l) —w' (1)) = ia& =
PA(Mz(1) - az(@(1) - w'(1)))
iAMz(1) = (id)* Mw(1), .
and hence w(l) = 0. Similarly, we can derive that
@ (1) = 0. Then it follows that w and ¢ satisfy

(K(w' - ¢)) + A%0w =0,

(El') - K(p - w') + A% Lp = 0,

w(0) = p(0) = w(l) =(l)=w' (1) =¢' (1) =0.
Thus, it is trivial to deduce that w(x) = ¢(x) = 0,
VY x € [0,1], and therefore ¥ = 0, a contradiction.
The proof is then complete .

Based on the criterion of asymptotic stability in [9],
we get the main result in this section:

Theorem 3 Suppose thata; + a; > 0,8, + 8, >0
and that Assumption S holds. Then for any initial state
Yy € #, the energy E(t) corresponding to the solution
of the closed loop system (2.4) decays asymptotically,
i.e.,

lim E(t) = 0.

4 Exponential decay of closed loop sys-
tem

In this section, we derive that under the condition of
ai, B = 0,a2,p; > 0, the closed loop system (2.4) is
of exponential decay. The main result in this section is
the following:

Theorem 4 Suppose that a;,53, = 0,a3,53, > 0.
Then the energy comresponding to the closed loop system
(2.4) decays exponentially, i.e., for every Y, € %,
there exist positive constants C,w, independent of Y,
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such that
E(t) < Ce | Yo Il 2.
Proof According to [10], it follows from Theorem
1 and Lemma 1 that we need only to prove that
sup (A=A <+ .

Assuming ﬂlfi)ntrary, then by virtue of the continuity
of (iA - _4)"!, theremustbe A, € iRand Z, = [w,,
20y PrrPnr &ns 1)’ € D(A),n = 1,2, such that
| Z,l %=1, 12, 1>+ ®(as n > »),
(4.1)
and
(A, -8 Z, | w A | Z,, | & = o(1),
(4.2)
where and afterwards, Z, = (A, - A)Z, = [i,,z,,
%n"zn’én’in]’r’an = 0(1) means that a, > 0,(n —
«) for every | a,}.
" From (4.1) and (4.2),

(Z,,Z,)% =
EZLM(I_) | @, (1) = wi(1) 12+
EI(JI_)@ Lop (D 1P+ 2,1 Z, | 5+

| KLCon = 0@ ) = G = ') (o = ) Dde +

j;Ez[go;:b; el ldx = o(1). (4.3)

Hence, we obtain
Re (Z,,Z,) % =

a,K(1) EI(D)B,

e (D-wn (D) 1P+ 7 en(1) 7= 0(1).

(4.4)
Referring to the facts that A,w, — z, = W, and A9, — @,
= @n, We get
~ilm {(Z,,Z,) %l =

) 3
A,,[JOEI | ¢, 1%dx +IOKI @ — w, 1*dx -

1 1
fop | z, 1’dx - L)I,, | ¢, 1%dx ~

S 18, 1 -% |7 12] = 0(1). (4.5)
From (4.2) ~ (4.5) and the fact that A5, -
KD (@(D) = wi (1) = 2,6, + o(1) = &, = o(1),
and 4,7, + EI(D) @, (1) = A,p, + (1) = 7. = o(1),

we have

Mz, (1) —ar( @, (1) —w, (1)) = Mz,(1) +0(1) = (1),
Jo. (1) + Baga (1) = Jp, (1) + o(1) = o(1).

Thus it follows from (4.1) ~ (4.5) that

(ea (D) —w, (1) =0(1), ¢;(1)=0(1),

7, (1) =0(1), ¢,(1) = o(1),

A, (1) = 0(1), A,9,(1) = 0(1), A&, = 0o(1),

&, = o(1), 2,3, = 0o(1), 7, = o(1),
il

i
1
N2 | z, 13dx +j01p | @ 1% - 5 = o(1),

0 2
I

= o(1).

] )
.[ K| gon_wr: |2dx +I0EI I gD,: Ide_i= 0(1)’
J p
5 =

)
AR I*dx + IOI,, | A, 12dx -

(4.6)
Based on the fact that A,Z, — 4Z, = Z,, we have
2w, — (K(w, - ) = p(z, + A, ,), (4.7)
L2, - [ (Elgy) —KCpu—w)) 1= L($n+A9n).
(4.8)
Multiplying both sides of (4.7) by (e - 1), , inte-
grating from O to /, referring to (4.2) and (4.6), and
integrating by parts if necessary, we can arrive at

il

Io(MleMl’p +(e* - D) | Aw, 17dx +
1

L)(Mle’"l‘K - (eM* ~ 1K) | w, 1%dx +

I
2Re JOK(eMl" - Diwap,dx = o(1), (4.9)

where M, is a positive constant to be determined later
on.

Similarly, multiplying both sides of (4.8) by (e":* —
1)¢, , integrating from O to !, referring to (4.6), and

integrating by parts if necessary, we get
[ MMty + (Hr D) 1 Ay 175 +
Ll)(Mle”l’EI - (eM* —1)Er') | ¢, 1*dx -
j;K(eMl‘ - l)w,(gz,(dx = o(1).

Adding (4.9) and (4.10), we obtain

(4.10)

!
Io(MleMlzp + (eM* ~ D) | Aw, I’dx +

2dx +

l
L)(Mle”l"K —(eM* - 1K) | w!

l
L)(Mle”n"lp + (M - DL | A9, 1°dx +
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! -
JO(M,eMI”EI) - (eM* - 1)EI') | ¢! 1%dx = o(1),

(4.11)
which, when M, is large enough, is an obvious contra-
diction to (4.6), the proof is then complete.
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