F0HESHW
20034E£ 10 A

EHRIERS B A
Control Theory & Applications

Vol.20 No.5
Oct. 2003

Article ID: 1000 - 8152(2003)05 - 0678 - 07

Controller design for a class of controlled Petri nets

DONG Li-da'*?, WU Wei-min', XU Wei-hua', SU Hong-ye', CHU Jian'
(1. National Laboratory of Industrial Control Technology, Institute of Advanced Process Control, Zhejiang University, Zhejiang Hangzhou 310027, China;
2. Institute of Electronic Circuit and Information Systems, Zhejiang University , Zhejiang Hangzhou 310027, China)

Abstract: A novel controller synthesis method for solving forbidden states avoidance problem was presented by exploiting
the structural properties of Petri nets. The method could be used to design state feedback controllers for a special class of con-
trolled Petri nets in which all precedence path subnets were state machines. The synthesized controller is maximally permissive

under no concurrency assumption.
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1 Introduction

The controller synthesis problem is to design a con-
troller that restricts the behavior of controlled Petri net
(CtIPN) to some control specifications!!!. The algo-
rithms proposed by Holloway et al'?!,. Krogh et all* and
Boel et all*! are typically path-based methods. The main
drawback of the path-based methods is that they are only
applicable to a small class of CtIPN’s®!. The approach
proposed by Li and Wonham!®! is a kind of typical linear
integer programming approach. It can be applied for
CtPN’ s in which the uncontrollable subnets are loop-
free. The S-decreases method proposed by Chen is based
on dual LIP approach. The method can be used for
CtPN’ s in which all influentially uncontrolled subnets
are forward and backward conflict-freel>! .
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Through exploiting the structural properties of Petri
nets, for a special class of CtIPN’ s in which all prece-
dence path subnets are state machines, the control policy
can be obtained via determining whether or not a mark-
ing satisfies a collection of inequalities in this paper. We
claim that the CtIPN consider here cannot be addressed
by the reported methods!2~% . Furthermore, the de-
signed controller is maximally permissive under no con-
currency assumption.

2 Controlled Petri nets
2.1 Ordinary Petri nets

An ordinary Petri net is a triple G, = (P, T, E) with
the set of places P, the set of transitions T, the set of
directed arcs E ¢ (P x T) U (T x P), and the inci-
dence matrix E: P x T— {0,1, — 1} defined as [7]:
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1, if(:,p) €E,
-1, if(p,t) € E,
0, otherwise.
The set of all input and output places of a transition
t € Tisdefinedas ¢t = {p € P (p,t) € E} and
t'={p €& P1(t,p) € E}, respectively. Similarly,
the set of all input and output transitions of a place p €
Pisdefinedas p = {t€ETIi(t,p) € El andp =
{t € TI1(p,t) € E}, respectively. A state machine
(SM) is an ordinary PN such that [ "¢ [ =1 ¢ | = 1 for
al: € T.

A marking of a PN is a function m: P— Z,. The set
of all possible markings is denoted by M. A transition ¢
is state-enabled by a marking m € M if foreachp € "
such that m(p) = 1. For a given marking m, a state-
enabled transition ¢ may be fired, and will result in a
new marking m’' defined by the following equation:

m'(p) =

m(py~1p N i1+l pNiel, vp € P.

(2)

The evolution of a PN from a marking m to a marking
m’ after firing transition ¢ is denoted by m[ t) m' , where
i is state-enabled by m, and m' is defined by the equa-
tion (2). A firing sequence from m, is a sequence of
transition 6 = (29, 81,"*,8_1) such that mgl to) m,
(e[ ¢4_,) my, denoted as mo(o) my. After execut-
ing a firing sequence o, the new marking can be decided
by the following state transition equation:

E(p,t) = (1)

m':m+E'5’, (3)

k-1

where 5(t): = > [ 1e} N {4} | is a firing count vec-

i=0
tor.

A marking m' is reachable from m in G if there exists
a firing sequence o such that m(o)m’. The set of all
firing sequences in G is denoted by £(G). The set of
transitions occurring in the firing sequence o is denoted
by T(o). The set of all reachable markings in G is de-
noted by R (m). For M' ¢ M, the set of all reachable
markings from M’ is denoted by R.(M'):
=,..QM'R°°('")'

2.2 Controlled Petri nets

Formally, a CtIPN is a tuple G°: = (G, T¢), where
G = (P,T,E) is an ordinary Petri net and T ¢ T(T*

= T\ T°) is the set of controllable ( uncontrollable}
transitions. The state of a CtIPN G° is determined by its
marking, which is the distribution of tokens in the state
places. A CtIPN is shown in Fig.1, where circles repre-
senting state places, bars representing uncontrollable
transitions, and bars with the letter ¢ representing con-
trollable transitions.

A control of a CtIPN is a function »: T— {0,1} with
Vit € T, ult) = 1. The set of all controls is denoted
by U. uy € U is called the zero control, if ¥t € T°,
ug(t) = 0. A transition ¢ is control-enabled if u(t)
= 1. A transition : is enabled under the given marking
m and control u if : is both state-enabled and control-en-
abled. For a given marking m and control u , an enabled
transitions ¢ can be fired, and will result in a new mark-
ing m' defined by the equation (2) .

Given a CIPN ¢° and a control u, if there exists a fir-
ing sequence o such that m[ o) m’ and t; is control-en-
abled, then the marking m’ can be reached from m under
u in G°. The marking set R;(u,m) denotes all mark-
ings that can be reached from m within k steps under the
control . The set of all reachable markings under the
control  is defined by R, (u,m): = ,!_1.12 R(u,m).
2.3 Precedence path subnet

A path w1 = (pytipata--ti_1pi) is a string of nodes
such that both of the beginning and end nodes are
places, t; 5 t;and p; 5 p;withi 5 j, and t; € p; N
"pisifor Vi € {i, -,k —1}. The set composed of all
places occurring in 7 is denoted by 7.

Definition 1 Given a place p € P in G°, a prece-
dence path = (p) of p is a path (p,¢,p, - #;_yp;) such
that: 1) p = p432) Vi € {1,k -1},;;, € T";
The set of all precedence path of p is denoted by IT(p).
Define place set I,(p): = U m,(p).

=€ H(p)
Definition 2 Given a place p € P in G°, a prece-
dence path subnet PPS(p) is a subnet P, T, £), where
P:Hp(p),f‘='f’ﬂ Téandk = (P x T U T x
PYNE.
Example 1 Consider the CtIPN shown in Fig. 1.
The precedence path subnets of p; and ps are illustrated



http://www.cqvip.com

680 Control Theory & Applications Vol.20
in Fig.2 and Fig.3 respectively. Z"(P) -m' (p) < ki. (7)
PEF
From (3), (5) and (7), we have the equation
Ap iy = imEMIV e m+T-E-6" < ki,
A (8)

Fig. 1 Controlled Petri net

Fig. 3 Precedence path subnet of ps
3 Admissible markings
We consider a legal set defined as follows:
Mey, = 1m € M| 2u(p) - m(p) < ki,

pEF

(4)
where F ¢ P is said to be constraint place set, k € Z,
is a non-negative constant scalar, and v: F — R, is a
non-negative constant n-vector. It can also be expressed
as the following form:

Mp,,=1m€ M| v" - m < ki, (5)
where v(p) = Ofor Yp ¢ F. The admissible set of
Mg ., is defined as follows:

Ap ko = 1m € M | Ru(ug,m) C Mp,,,t.(6)
According to (4), Ar,;,, can also be described as
Ap g, = 1mEMI Ym € Rulug,m),

where o * is the solution to the following optimization
problem[ﬁ] :
ag}‘:%u) vV E -0, (9)

Usually, the optimization problem is a nonlinear inte-
ger program'®’ . However, if all precedence path subnets
of the constraint places are state machines, then the
problem can be converted into determining whether or
not a marking satisfies a collection of inequalities.

Definition 3 Given a set F’ C F such that Y p;,
p2€ F,v(p)) = v(py) = v and ¥ps € F\ F',
v(p3) s v’ is called equivalent constraint place set. A
set composed of all equivalent constraint place sets of F
is denoted by %, and it can be indexed by the subscript
set | = {1,---,s! where s is some integer, i.e., #
- iléJl{ Fit.

By Definition 3, ¥V F; € Fand Vp € F;,v(p) is
fixed and is denoted by v;. Henceforth, we can rewrite
(7) as follows:

Apr,=im € M| Z (vi'Zm'(p))s k).

mER_(uym)  pEF,
(10)

Definition 4 For F; € % (i € I), we define the
following place sets:

D) (F, <): = {F, € #F1j€ I,u; > vyl

2) °F,: =pyFin(p);

3)°(F;, <): = U °F;

FE(F, <)

4) "F;: = °F;\°(F,, <).

Definition 5 For %= | F; c F | i € I}, we de-
fine the following transition sets:

Dviel,T;: ="CF)NCF)YNT

2) T, =i9’((*Fi)' \C(TF))N T

3) In special, Top: = T*\ (i%J'Ti UrT).

Remark 1 For Y p € F, if PPS(p) is a state ma-
chine, then T, "' T; = @, T; N T; = ®and T; ()’
T, = @foryi,j€ {0,1,--,s} withi = j.

Lemmal LetVp € F;,PPS(p) be a state ma-
chine. Then there is a firing sequence o with (o) c T;

:3
3
)
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such that Zm’(p) = >, m(p) where m[o)m’.

pEF; pE"F,
Proof From Definition4, ¥ p, € F;,1 € {1,
| " F; I}, there is a path = = (pitupntn pii-1) ta,
Pu ) such that forj = 1, ,k,p; € " Fi,t; € T; and
pu € F;. Since Y p € F;, PPS(p) is a state machine,
of = (tntp "ty py ) is a firing sequence and it can be

executed by m( p;) times, i.e.,

oy = 0}:0]:°"":0]
[ —
m(p)

is a firing sequence such that T(s;) C T;. After firing
oy, all tokens in p; move into py, and the tokens in other
places do never change. From the above description, ¢
= oy:°-:0 | * F; | is a firing sequence such that T(a;)
C T;. After firing o, it means that all tokens in * F;
move into F; and the tokens in other places do never
change. Henceforth, the Lemma is true.

Remark 2 From the proof of Lemma 1, it follows
that after firing any sequence o with T(s) C T;, we
have that Zm'(p) < 2, m(p).

PEF, e F,

Lemma2 LetyYp € F,PPS(p) be a state ma-
chine. Then there is a firing sequence ¢ = o,:""*: 0
with T(o;) Cc T;(i = 1,---,s) satisfying that after the
firing of o, it holds that > v(p) « m'(p) = >, (v; -

PEF i€l

2 m(p)), where m[o)m’.

PE"F,

Proof We prove the lemma by induction on the car-
dinality of % i.e., | #1.

a) Induction base;: when | #1 = 1, from Lemma 1, it
is true;

b) Induction hypothesis: when | #1= s - 1, it is
true;;

c¢) Induction procedure: when | #| = s, it implies
that #= % U |F,} where & = | F\,--,F,,}. Itis
obvious that | %" | = s — 1. By induction hypothesis,
there is a firing sequence ¢’ = o¢,:°"*:0,_; such that
T(o;) C T;(i = 1,---,5 — 1). After firing ¢’ , it holds
that

) m_1(p) e r = m(p) lpeF s

i) ) (o(p)ems (p) = 2 (o 3 m(p)).

-1 -
reUF, PEF,

By Lemma 1, there is a firing sequence o, with T(s,)
C T;. After firing o, , it holds that
iii) m,(p) |peft:flri = m,_,(p) |peft:JllFi;
iv) 2 m(p) = 2, m,_(p).
PEFJ pe.F’

From i),ii),iii) and iv), we have that

g(um - m(p)) =

> (u(p) » m(p)) + 2 (v, » m(p)) =

D) (w(p) - my (p)) + 2 (v, = my_y(p)) =
reUF, p<F,

o Dmp) + 2 (u - mlp)) =

P F, pEF,
23 (o - 25 m(p)).
i=1 pE.FI.

Hence, when | #| = s, the lemma is true.

Remark 3 From Remark 2 and Lemma 2, it im-
plies that after firing any sequence o = o0;:°**:0, with
T(o;) c T:(i = 1,*,s), we have that:

ST(p) - m' (p) < 2 (v + 2, m(p)).

PEF i€l pE°F,

Lemma 3 Given an ordinary Petri net G and two
transitions zl,zzé T, t,(V tya=®and ¢, N t; =
@. If (t,¢,) is a firing sequence, then (¢,¢,) is also a
firing sequence.

Proof Lemma 3 comes from Lemma 5 in [7].

Lemma 4 Given an ordinary Petri net G and two
sets of transitions T, T, € T," T1 (1" T, = Pand" T,
NT, =®. If m[o)m with T(o) c Th U T,, then
there exists ¢ = o, : o, satisfying T(q;) c T;(i = 1,2)
and m[o)m. ‘

Proof We prove the lemma by induction on occur-
ring counts of the elements of T, in ¢ which denoted by
cout (o, T,).

a) Induction base: When cout (o, T;) = 1, suppose

«0 = (El‘"ti"'tk) such that Lyo s lic1aliv1s " "0 bk <

T,and t; € T,. By applying Lemma 3 multiple times in
succession, ¢ = (fit,"""t;_18;,1 " t) is a firing se-
quence. So, the lemma is true;

b) Induction hypothesis: When cout (o, 7T,) = [ -
1, the Lemma is true;

c¢) Induction procedure: When cout (o,7T;) = I,
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suppose o = o1 ¢:07 such that ¢ € Ty and T(o?) C Ts.
It implies that cout (o', Ty) = [ - 1. From the induc-
tion hypothesis, o}:0}:¢:0° is a firing sequence such
that m[o}:6}:2:0%)m, where T(o}) c T and T(g3)
C T,. By applying Lemma 3 multiple times in succes-
sion, ol:¢:04:02 is a firing sequence such that m[q}:
t:0:0%)m. Leto, = ol:tand o, = o}:0%, theno =
J1:0, is a firing sequence. Henceforth, the lemma is
true.

Lemma5 LetVp € F,PPS(p) be a state ma-
chine. If there is a firing sequence ¢ such that 7(o)
gil:JoT,- and m[ o) m, then there must exists = 0g: 0
wr:g, with T(5;) C T:(i = 0,1,-+,s) such that
mlo)m.

Proof By Remark 1, we can obtain the lemma by
applying Lemma 4 multiple times in succession.

Lemma 6 Let Vp € F,PPS(p) be a state ma-
chine. If there is a firing sequence o such that T(s) C
T*, T(c) N T, =« @, and m[ o) m then

D (w(p) - m(p)) <
pEF
(2v(p) - m'(p)).

max
m'GR,,(uo,m) PEF
Proof It suffices to show that if ¢ = o): ¢: 0, where
1 € T, and T(s1), T(a,) ¢ UT;, then X, (o(p) -

pEF

m(p)) < _max (23o(p) - m'(p)). Considering

E€R,, (uy,m) pEF

mlo,Ym[t > myla,)m , there are three cases:
1) For ' ¢t c* F;and ¢ C " F; with v; > v;: If the
transition ¢ is fired at m,, then it is true that

ml(P) Ipe'z -1

mZ(P) IpG'l
mi(p) lper + 1

mz(P) |pez'
m/)_(P) lpg‘lUl. = ml(P) |p¢'lUl.'
From Remark 3, it holds that

>So(p)em(p)< 2 (v 2y ma(p)),

pEF el pe*Fi
namely,
g(v(p)wﬁ(p))s D (v 23 mi(p)) +v5-v;.
PEF i€l sE°F,

By Lemma 5, we also have a firing sequence ¢’ = o
o3 such that T(a3) ¢ YT;and 2, (v(p) - m(p)) =

pEF
Z(”i * E m(p)).

i€l b F,

Vol.20
Henceforth,
D (w(p) » m(p)) < ;(v(p) -m(p)) <
pEF pEF

max (Zv(p) -m'(p)).

mER, (ugm) rCF

2) For ¢ g*F,-andt'g*Fjwithv,- < v;, this case
does not exist;

3) For'tg*F,-andt'gjyl*F},thepmofissimilar
to the one of cases 1).

Lemma 7 Let Yp € F,PPS(p) be a state ma-
chine. Then  max (>,v(p) - m(p)) = Z(v,- .

mER, (ugem) g i€l

> m(p)).

pG'Fi
Proof From Lemma 6, it suffices to show that for
any o with T(¢) ¢ T"and T(s) (| T, = & such that

D (o(p) - m(p)) < 2 (m » 2 m(p)). From

pEF i€l pG.F.
Lemma 5, 6 = 0g:0,:""":0, is a firing sequence such
that m{o)m and T(o;) c T:(i = 0,°**,s). From Re-

mark 3, we have that Z(v(p) . r;l(p)) < Z(vi y

PEF i€l

>} m(p)). By Lemma 2, we know that the lemma is
pE"F,
true.

From the above lemma, we can rewrite (10) as fol-
lows:

Ap g = Im € M1 23 (v + 23 m(p)) < ki

icl pe‘Fi
(11)

and it is natural to obtain the following theorem:

Theorem 1 Given a CtIPN G° and a legal set
Mg ; ,* If PPS(p) is a state machine, then Af ;,, =
fm € M1 cT+ m < k| with some constant n-vector ¢
c RS

Example 2(continued) Consider the CtIPN Fig. 1
with the legal set My ., = (m(p;) + 2m(ps) < 3).
We have that F = |p,,pst,Fy = ipi},F, = {psi,

*

Fy = IP15P7’P8’P9! and *Fz = le’Ps’Pups,
pe!. By Lemma 7, it holds that Ag 4, = (" m<k)
where ¢ = (1,2,2,2,2,2,1,1,1)Tand k& = 3.
4 State feedback controllers

Define a state feedback controller as follows!®! ;
{1’ if m[ti>m,’ m’ e AF,k,v’
u(t;,m) = ]
0, otherwise.

(12)
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From Theorem 1, we can directly obtain the following
theorem:

Theorem 2 Given a CUPN 6° and a legal set
Mg, ,. Y p € F,PPS(p) is a state machine, then
the state feedback control policy is given by

Ve, €T, u(t;i,m) = (¢T-m < d;) (13)
where d; is some constant.

Proof By the state transition equation (2), we have
m = m+ E -0, wherea(s;) = 1. By Theorem 1, it
holds that ¢" - (m + E - ) < k. It means that there is
constant d; = k — ¢" + E - o such that ¢” - m < d,.
Henceforth, the theorem is true.

Under the assumption of no concurrency (NC), the
controller defined as (12) is the unique maximally per-
missive control policy for a given m € My , %!, So,
the state feedback controller designed by (13) is also the
unique maximally permissive.

Example 3 (continued) Consider the CtIPN shown
in Fig. 1 with the initial marcking m = (1,0,0,0,0,0,
0,1,0)" and the legal set Mx , , = (m(p,) + 2m(ps)
< 3). By Theorem 1, we have Ar ;. , = (¢" - m <
k), where ¢ = (1,2,2,2,2,2,1,1,1)Tand k = 3. Ac-
cording to (13), we obtain that

u(ti,m) = (cT-m<?2) =1,
u(ty,m) = (¢T-m<2) =1,
u(ts,m) = (¢T-m<1) =0.

Remark 4 If the control objective is given by an
intersection of ij'kj',,j(j € J,J is an index set), then
Theorem 2 can be directly extended as follows: If ¢ j €
J.V p € F;, PPS(p) is a state machine, then the state
feedback control policy u is given by

Ve, €T, ult;,m) =ié\1(cf’ m< d;;),

(14)
where ¢; is some constant n-vector and d; ; is some con-
stant.

Example 4(the cat and mouse problem) The prob-
lem is a popular example in the field of DES control and
the model in Fig. 4 is taken from [9], where the transi-
tions ¢, and to are uncontrollable (For details, please re-
fer to [9]). The control objective is given as follows:

Mr k0, = (m(p1) + m(ps) < 1),

My i ., = (m(py) + m(p7) < 1),

2

Me k.o, = (m(p3) + m(pg) <1

)s
Ms k.o, = (m(p2) + m(ps) < 1)

Ms 1,0, = (m(ps) + m(pi) < 1).
By Theorem 1, we have the following expressions:
AFl.k Y = (m(Pl) + m(P6) = l)a

= (m(pz) + m(py) + m(ps) < 1),

v 1.’2

Ar ko, = (m(p3) + m(pg) < 1),
A, k0, = (m(p2) + m(ps) + m(pg) < 1),
Af ko, = (m(ps) + m(pp) < 1).

From Remark 4, the state feedback control policy is giv-
en as follows (For simplicity, we only show the control
of t;):

u(ty,m) =

(m(p1) + m(pg) <2) A

(m(p2) + m(ps) + m(p;) <0) A

(m(p3) + m(ps) <2) A

(m(p2) + m(ps) + m(pg) <0) A

(m(ps) + m(po) < 2).

cat
P, i P

Fig. 4 Cat and mouse problem

5§ Conclusions

In this paper, we have shown that if all precedence
path subnets are state machines, then the computation of
state feedback control policy becomes a matter of deter-
mining whether or not the current marking satisfies a col-
lection of inequalities. Furthermore, the controllers de-
signed by using Theorem 2 are maximally permissive un-
der the assumption of no concurrency.
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