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Mixed H,/H,, filtering with regional pole assignment
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Abstract: The mixed H;/H., filtering problem with regional pole assignment was addressed for linear continuous time-in-
variant systems. A general framework for solving this problem was established using LMI approach in conjunction with regional
stability constraints, H, and H,, optimization characterizations. The necessary and sufficient conditions for the solvability of the
problem were given in terms of a set of LMI’s. A numerical example was provided to illustrate the proposed design approach.
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1 Introduction

The state estimation of dynamic systems in the pres-
ence of both process and measurement noise poses a very
important problem in the engineering applications. One
celebrated design approach is the Kalman filtering ( also
called as H, filtering) , which minimizes the H, norm of
the estimation error under the assumptions of the noise
processes with known power spectral densities'!!. In
practice, however, the noise processes often have un-
known or uncertain spectral densities. This difficulty has
been overcome by reformulating the estimation problem
in an H, filtering framework during the last few
years'?) . Moreover, de Souza et al®) have presented an
example to demonstrate that the H,, filtering is more ro-
bust to plant uncertainties than the H, filtering.

The H,, filtering offers a performance that is signifi-
cantly better than the corresponding performance of the
H, filtering. However, the H,, filtering typically leads to
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a large intolerable estimation error variance when the
system is driven by white noise signals. The advantage
of H, filtering is that the variance of the estimation error
is minimized. The mixed H,/H,, filtering approach that
considers the co-presence of two sets of exogenous sig-
nals was introduced as an attempt to capture the benefits
of the two filters. The mixing approach allows one to
trade off between the best performance of the H, filter
and the best guaranteed worst-case performance of the
H,, filter. As a result, the optimal mixed H,/H,, filters
achieve the best performance, not over the set of all fil-
ters, but over a restricted set of filters that achieve a cer-
tain worst-case performance bound. However, unlike the
H, and H,, filtering problems, with readily computable
solutions, no ideal solution has been suggested to the
mixture problem, even though the following approaches
that have been used to address the mixed H,/H,, filter-
ing problem.
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Bemstein and Haddad™*’ first transformed the mixed
H,/H, filtering problem into an auxiliary minimization
problem, and then, gave the solution which leads to an
upper bound on the H, filtering error by solving a set of
coupled Riccati and Lyapunov equations using Lagrange
multiplier technique. A time domain game approach was
proposed to solve the problem through a set of coupled
Riccati equations'>*6! . Khargonekar et all”! and Rotstein
et al'®) have used convex optimization approach to obtain
the solutions involving affine symmetric matrix inequali-
ties. An alternative approach, LMI approach, will be
introduced in this paper to solve this problem. Since
LMI’ s intrinsically reflect constraints rather than opti-
mality, they offer more flexibility for combining several
constraints. LMI’ s can be solved by efficient interior-
point optimization algorithms, such as those described in
[9 ~ 11]. Moreover, software like MATLAB ’s LMI
Toolbox is now available to solve such LMI’s efficiently.

On the other hand, the standard mixed H,/H, filter
design primarily concems the stability and frequency-do-
main performance specifications of the filter, and pro-
vides little control over estimation dynamics. As is well
known, the dynamics of a linear system is related to the
location of its poles. By constraining the filter’s poles to
lie inside a prescribed region of the left-half complex
plane, the filter designed will have a desired perfor-
mance. Moreover, the locations of the filter’ s poles can
improve the transient behavior, and also provide indirect
tolerance against structured uncertainties. In this paper,
we will address the mixed H,/H,, filtering problem with
regional pole assignment for linear continuous time-in-
variant systems. To our knowledge, the mixed H,/H.
control problem with regional pole assignment has been
considered in [12], but the mixed H,/H. filtering
problem with regional pole assignment remains open.
The approach to be used is different from that proposed
in [12], where the Lagrange multiplier technique was
used to solve a set of highly coupled Riccati and Lya-
punov equations. We transform the H, norm bound, H..
norm bound and pole clustering into LMI formulation.
After straightforward manipulations with the help of the

variable changes, the overall problem remains convex.
The solutions can be readily obtained by using existing
LMI Toolbox .

The notation used here is fairly standard. @ denotes
the Kronecker product; | -
Hardy space; M” denotes the Hermitian transpose of ma-
trix M;tr (M) represents the trace of matrix M;A de-
notes the conjugate of A ; the shorthand diag {M,, M,,
***, My} denotes a block diagonal matrix whose diagonal
blocks are given by M, M,, etc.

2 Problem formulation

Consider a linear time-invariant system described by

the state space model:

i(t) = Ax(t) + Bjw(t) + Byw(t),

y(t) = Cx(t) + Dyw(t) + Dyv(t),

2(t) = Lox(t),

z2(t) = Lyx(e),
where x(t) € R" is the state, y(t) € RP is the mea-
sured output, z., (t) € R™ represents a combination of
the states to be estimated, and z,(t) € R™ represents
another combination of the states to be estimated. w ()
€ RP' is a bounded power stationary disturbance input,

| , stands for H,-norm in

(1)

" which belongs to L,[0,® ], and v(t) € R is a zero-

mean Gaussian white noise process with unit covariance .
A,C,B\,By,D,,D;, L, and L, are known real matri-
ces with appropriate dimensions. It will be assumed that
the initial state x(0) is known, and without loss of gen-
erality, we will take x(0) = 0. Note that when z, (t)
and z,(t) are the same, the system (1) is reduced to
those described in [5,8].
Here is the assumption:
Assumption 1 The pair (A4, C) is observable.
Consider a filter for the system (1) of the form
£ (1) = (A - 6GC)2(2) + Gy(1),
2,(t) = Lo2(2t), (2)
£,(1) = L£(1),
where £(¢) € R" is the estimated state, 2, (t) € R™ is
an estimate for z., (t),2,(t) € R™ is an estimate for
z;(t), and G is filter’ s parameter to be determined.
Define the state estimation error
e(t) = x(t) - 2£(¢). (3)
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Then the resulting error system
é(t)=(A-GC)e(t)+(B-GD)w(t)+
(B — GDy)v(1),
ex(t) = 2a(1) - 2,(t) = Loe(t),
ex(t) = z,(t) = 2,(t) = Lye(t).
Let To(s) = Lo(sI — A + GC)~'(B, - GD,) be the
transfer function from w(t) to e, (t) and T(s) =
Ly(sI - A + GC)'(B, - GD,) be the transfer function
from »(¢t) to e,(¢). Then, the mixed H,/H,, filtering
problem with regional pole assignment considered in this
paper is as follows.
Problem 1(mixed H,/H,, filtering problem with re-
gional pole assignment)
Find the filter (2) which can satisfy the following de-
sign performance:
i) The H, criterion || T»(s) || , is minimized;
ii) T (s) satisfies the constraint
| Ta(s)l e < 7, (5)

where ¥ > O is a given constant; and

(4)

iti) The pole of the filter lies in the specific regions.
3 LMI formulation for H, norm, H.
norm and pole assignment
3.1 LMI formulation of H, norm
Assume G(s) = C(sI - A)~'B and A is asymptoti-
cally stable. The H, norm of G(s) is defined by

Il G(s) 13 = ﬁf:u (G (jw) G(jw))dew. (6)

It is well known that the H, norm of G(s) can be equiv-

alently expressed as
I 6(s) 113 = tr (€CQCT) (7
where Q = QT satisfies the following Lyapunov equation
AQ + QAT + BBT = 0 (8)
or
| 6G(s) I3 = tr (B"PB) (9)
where P = PT satisfies the following Lyapunov equation
ATP + PA + C"C = 0. (10)

Lemma 1>} (H, norm bound) Given any trans-
fer function G(s) = C(sI - A)"'B, and assume A
asymptotically stable, we have

I6(s) N3 <8 (11)
if and only if there exist symmetric positive definite ma-
trices X and Q such that

[ATX+XA XB

BTY g < 0, (12)
X ¢ .

c Q]>O, (13)
tr (Q) < B. (14)

3.2 LMl formulation of H, norm

Lemma 2[5/ (H_, norm bound) Given any trans-
fer function G(s) = C(sI — A)"'B, and assume A
asymptotically stable, we have

6(s) e <7 (15)
if and only if there exists a symmetric positive definite
matrix X such that
A"X + XA XB (ol

BTX -yl 0 [<0o. (16)
c 0 -7
This Lemma is known as the Bounded Real Lemma.
3.3 LMI formulation of pole assignment

Pole assignment in convex regions of the left-half
plane can also be expressed as LMI constraints.
Lemma 3[1617] (regional pole assignments) The
matrix A has all its eigenvalues in the LMI region
D=1{1 € C:fp(A) =L+AM+AM" < 0} (17)
where L and M are real matrices such that LT = L, if
and only if there exists a symmetric matrix X such that
Mp(A,X)=L Q@ X+M @ (XA)+M" @ (A"X) < 0.
(18)
According to Lemma 3, pole assignment in LMI re-
gions can be formulated as an LMI optimization prob-
lem. In practical application, LMI regions are often
specified as the intersection of elementary regions, such
as vertical half-plane,” vertical strips, horizontal strips,
disks or conic sectors. Given LMI regions D, D,,-*,
Dy, the intersection
D=D,ND,N N Dy
has the characteristic function
fo(A) = diag {fp (A),fp (1), fp (D)},

4 Solution to mixed H,/H. filtering
problem with regional pole assign-
ment

In the previous section, H, norm bound, H. norm

bound and pole assignment have been expressed as LMI
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constraints. Now we use these expressions to deal with
the mixed H,/H,, filtering problem with regional pole
assignment . According to Lemmas 1,2 and 3, their LMI
formulations are separately given.

1) The LMI formulation of || T,(s) |3 < Bis

(A-GC)" X+ X,(A-GC) X,(B,- GDZ)]

(B, - GD,)'X, -1
(19)
X, L}
[L2 QZ] > 0, (20)
2
ir (Q) < 8. (21)

2) The LMI formulation of || T (s) || « < 7is
(A-GC)"X,+X,(A-GC) X,(B,-6GD,) L%
(B, - GD\)"X, -yl 0 |<O.
L 0 -yl
(22)
3) The LMI formulation of regional pole assignments
is
LRX3+M@(X3(A-6C)) +M" Q((A-GC)'X;) < 0.
(23)
In order to recover convexity, we have to force the ma-
trices X, X5, X3 to be the same, i.e.
X, =X, = X5 = X. (24)
This restriction is the core of the Lyapunov shaping
paradigm!*! . Clearly it will bring conservatism into de-
sign. But the Lyapunov shaping paradigm offers greater
flexibility than standard optimal design techniques ( for
detail, see [14]). Therefore, the auxiliary problem of
the mixed H,/H,, filtering problem with regional pole
assignment which is an upper bound of the optimal AHZ
performance subject to the H,, performance and regional
pole assignment constraints is described as follows.
min tr ( Q)subject to (19),(20),(22) and (23) with

X>0,0>0.CG
X=X, = X5=X. (25)
The optimization problem (25) is not yet convex be-
cause it contains the products XG in LMI’s (20), (22)
and (23). The following theorem describes the neces-
sary and sufficient conditions for the existence of the fea-
sible solution to problem (25) .

Theorem 1 Let D be an arbitrary LMI region con-

tained in the open left-half plane and let (17) be its
characteristic function. The problem (25) is solvable if
and only if there exist symmetric positive définite ma-
trixes X and @, and matrix F such that the following
LMIs

[ A"X-C"F*+ XA- FC XB,-FD,
L BIX-DIFT g A< 08
- X L}
L L, - 0] <0 (2.7)
]-ATX—CTFT+XA—FC B\ X-FD, L%
BIX - DTF" -7l 0 |<o,
L Le 0 -yl
(28)
LR X+M Q@ (XA-FC)+M"' @ (A"X-C'F") < 0
(29)

are feasible. Moreover a suitable filter’ s parameter G is
determined by
G =X'"F. (30)
Proof The results are immediately obtained by the
change of the variable
F = XG. (31)
According to Theorem 1, the optimization problem
can be rewritten as follows:
X)glgr:”tr ( Q) subject to (26) ~ (29). (32)
Remark The mixed H,/H,, filtering problem with
pole placement is a constrained optimization problem.
So the analytic solutions are very difficult to be ob-
tained. We have reformulated the auxiliary problem
(32). Here the upper bound is used to replace the opti-
mal H, performance in problem 1. Therefore the solution
to (32) is not optimal mixed H,/H,, filtering problem
with pole placement. But our approach is more flexible,
which searches all possible solutions until no specifica-
tions are met or none of the degrees of freedom are ex-
hausted. Although it is an upper bound solution, it will
be close to the optimal solution.
5 Numerical example
Consider the linear system

-1.8 0.3 -1.6 0
x(t)z[ 0 -5 0.5 }x(t)+{—2}w(t)+

1.2 0.8 -0.5 1
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the filter’s poles to be assigned inside the disk centered
at ( - 6,0) with radius 5. The true values of H; for dif- '
ferent filters are given in Table 1. It can be seen from
Table 1 that the true value of H, for H; filter is the
smallest and the true value of H, for H, filter is the
largest. Although the optimal upper bound value for Hy/
H., filter with regional pole assignment is larger than that
of H,/H,, filter, its true value is smaller than that of
H,/H., filter. The cause is that the pole constraint is ap-

-1
|:0.2}v(t),
0

y(t)=[1 -0.6 2]x(t)+0.2w(t)+0.3v(2),
zo(t) = [1 0 0.5]x(2),

z(t) = [1 0 2]x(t).

We have designed four filters for this system: H; filter to
minimize the upper bound of | T,(s) |l ;; H, filter
with || Tw(s) | » < ¥ = 0.1; Hy/H,, filter to mini-
mize the upper bound of |l T,(s) |, subject to
| To(s) Il « < ¥ = 0.15 Hy/H,, filter with regional
pole assignment to minimize the upper bound of
| T2(s) Il ; subject to || Tw(s) | w < ¥ = 0.1 and

plied to design the filter, and good transient property is
obtained. It is evident from this example that the pro-
posed H,/H,, filter with regional pole assignment is su-
perior hence the necessity of poles constraints.

Table 1 Comparison of results for different filters
filtering type gain I T2(s) Ml 2
 Hiltering with
Ha/H., filtering wi G=[-0.1945 -3.765 2.4183] 0.5631 0.9179
regional pole assignment
H, filtering G = [0.5558 0.2130 1.1528] 0.5341 0.5341
H.,, filtering G =[-0.0918 -8.2537 4.2777] 0.6183 NA
H,/H,, filtering G =[-0.2055 -4.3723 2.8291] 0. 5687 0.7878

The plots of singular values for different filters are

also a prescribed region of the left-half complex plane

given on Fig. 1. These responses confin that the H.,
constraints are satisfied and the singular values stay be-

for the poles of the filtering emror dynamics. Our ap-
proach can be extended to discrete systems and uncertain

low their respective bounds.

systems.

10 singular values
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